1
|
Costa J, Baratto MC, Spinelli D, Leone G, Magnani A, Pogni R. A Novel Bio-Adhesive Based on Chitosan-Polydopamine-Xanthan Gum for Glass, Cardboard and Textile Commodities. Polymers (Basel) 2024; 16:1806. [PMID: 39000661 PMCID: PMC11244100 DOI: 10.3390/polym16131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The escalating environmental concerns associated with petroleum-based adhesives have spurred an urgent need for sustainable alternatives. Chitosan, a natural polysaccharide, is a promising candidate; however, its limited water resistance hinders broader application. The aim of this study is to develop a new chitosan-based adhesive with improved properties. The polydopamine association with chitosan presents a significant increase in adhesiveness compared to pure chitosan. Polydopamine is synthesized by the enzymatic action of laccase from Trametes versicolor at pH = 4.5, in the absence or presence of chitosan. This pH facilitates chitosan's solubility and the occurrence of catechol in its reduced form (pH < 5.5), thereby increasing the final adhesive properties. To further enhance the adhesive properties, various crosslinking agents were tested. A multi-technique approach was used for the characterization of formulations. The formulation based on 3% chitosan, 50% polydopamine, and 3% xanthan gum showed a spectacular increase in adhesive properties when tested on glass, cardboard and textile. This formulation increased water resistance, maintaining the adhesion of a sample soaked in water for up to 10 h. For cardboard and textile, material rapture occurred, in mechanical tests, prior to adhesive bond failure. Furthermore, all the samples showed antiflame properties, expanding the benefits of their use. Comparison with commercial glues confirms the remarkable adhesive properties of the new formulation.
Collapse
Affiliation(s)
- Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Via del Gelso 13, 59100 Prato, Italy;
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Bauër P, Leemans M, Audureau E, Gilbert C, Armal C, Fromantin I. Remote Medical Scent Detection of Cancer and Infectious Diseases With Dogs and Rats: A Systematic Review. Integr Cancer Ther 2022; 21:15347354221140516. [PMID: 36541180 PMCID: PMC9791295 DOI: 10.1177/15347354221140516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Remote medical scent detection of cancer and infectious diseases with dogs and rats has been an increasing field of research these last 20 years. If validated, the possibility of implementing such a technique in the clinic raises many hopes. This systematic review was performed to determine the evidence and performance of such methods and assess their potential relevance in the clinic. METHODS Pubmed and Web of Science databases were independently searched based on PRISMA standards between 01/01/2000 and 01/05/2021. We included studies aiming at detecting cancers and infectious diseases affecting humans with dogs or rats. We excluded studies using other animals, studies aiming to detect agricultural diseases, diseases affecting animals, and others such as diabetes and neurodegenerative diseases. Only original articles were included. Data about patients' selection, samples, animal characteristics, animal training, testing configurations, and performances were recorded. RESULTS A total of 62 studies were included. Sensitivity and specificity varied a lot among studies: While some publications report low sensitivities of 0.17 and specificities around 0.29, others achieve rates of 1 sensitivity and specificity. Only 6 studies were evaluated in a double-blind screening-like situation. In general, the risk of performance bias was high in most evaluated studies, and the quality of the evidence found was low. CONCLUSIONS Medical detection using animals' sense of smell lacks evidence and performances so far to be applied in the clinic. What odors the animals detect is not well understood. Further research should be conducted, focusing on patient selection, samples (choice of materials, standardization), and testing conditions. Interpolations of such results to free running detection (direct contact with humans) should be taken with extreme caution. Considering this synthesis, we discuss the challenges and highlight the excellent odor detection threshold exhibited by animals which represents a potential opportunity to develop an accessible and non-invasive method for disease detection.
Collapse
Affiliation(s)
- Pierre Bauër
- Institut Curie, Paris, France,Univ Paris Est Creteil, INSERM, IMRB, Team CEpiA
| | - Michelle Leemans
- Univ Paris Est Creteil, INSERM, IMRB, Team CEpiA,Michelle Leemans, Univ Paris Est Creteil, INSERM, IMRB, Team CEpiA, 61 Av. du Général de Gaulle, 94000 Créteil, F-94010 Créteil, France.
| | | | - Caroline Gilbert
- Muséum National d’Histoire Naturelle, Brunoy, France,Ecole nationale vétérinaire d’Alfort, Maisons-Alfort cedex, France
| | | | - Isabelle Fromantin
- Institut Curie, Paris, France,Univ Paris Est Creteil, INSERM, IMRB, Team CEpiA
| |
Collapse
|
3
|
Mu Y, Williams PT. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review. CHEMOSPHERE 2022; 308:136481. [PMID: 36165927 DOI: 10.1016/j.chemosphere.2022.136481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Most of the volatile organic compounds (VOCs) and especially the chlorinated volatile organic compounds (Cl-VOCs), are regarded as major pollutants due to their properties of volatility, diffusivity and toxicity which pose a significant threat to human health and the eco-environment. Catalytic degradation of VOCs and Cl-VOCs to harmless products is a promising approach to mitigate the issues caused by VOCs and Cl-VOCs. Non-thermal plasma (NTP) assisted catalysis is a promising technology for the efficient degradation of VOCs and Cl-VOCs with higher selectivity under relatively mild conditions compared with conventional thermal catalysis. This review summarises state-of-the-art research of the in plasma catalysis (IPC) of VOCs degradation from three major aspects including: (i) the design of catalysts, (ii) the strategies of deep catalytic degradation and by-products inhibition, and (iii) the fundamental research into mechanisms of NTP activated catalytic VOCs degradation. Particular attention is also given to Cl-VOCs due to their characteristic properties of higher stability and toxicity. The catalysts used for the degradation Cl-VOCs, chlorinated by-products formation and the degradation mechanism of Cl-VOCs are systematically reviewed in each chapter. Finally, a perspective on future challenges and opportunities in the development of NTP assisted VOCs catalytic degradation were discussed.
Collapse
Affiliation(s)
- Yibing Mu
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul T Williams
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Dai Z, Yu J, Si Y. Gradient Porous Structured MnO 2-Nonwoven Composite: A Binder-Free Polymeric Air Filter for Effective Room-Temperature Formaldehyde Removal. Polymers (Basel) 2022; 14:polym14122504. [PMID: 35746080 PMCID: PMC9231320 DOI: 10.3390/polym14122504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022] Open
Abstract
Recently, MnO2-coated polymeric filters have shown promising performance in room-temperature formaldehyde abatement. However, a commonly known concern of MnO2/polymer composites is either MnO2 crystal encapsulation or weak adhesion. This work reports a low-cost high-throughput and green strategy to produce binder-free MnO2-nonwoven composite air filters. The production approach is energy saving and environmentally friendly, which combines MnO2 crystal coating on bicomponent polyolefin spunbond nonwovens and subsequent heat immobilizing of crystals, followed by the removal of weakly bonded MnO2. The binder-free MnO2-nonwoven composites show firm catalyst-fiber adhesion, a gradient porous structure, and excellent formaldehyde removal capability (94.5% ± 0.4%) at room temperature, and the reaction rate constant is 0.040 min−1. In contrast to the MnO2-nonwoven composites containing organic binders, the HCHO removal of binder-free filters increased by over 4%. This study proposes an alternative solution in producing catalyst/fabric composite filters for formaldehyde removal.
Collapse
Affiliation(s)
- Zijian Dai
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
- Correspondence: (J.Y.); (Y.S.)
| | - Yang Si
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
- Correspondence: (J.Y.); (Y.S.)
| |
Collapse
|
5
|
Kozicki M. Identification of Olfactory Nuisance of Floor Products Containing Bitumens with the TD-GC-MS/O Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:959. [PMID: 35160905 PMCID: PMC8840333 DOI: 10.3390/ma15030959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
The adopted TD-GC-MS/O method helps determine the correlation between the odour signals and compounds separated on the chromatographic column, from the analysed gas mixture. It is possible to compare the retention times at which the odour signals were identified with the retention time of eluting compounds, when the test system and matrix are known. The presented study describes the details of representative samples obtained from (1) indoor air samples from a room where floor materials containing bitumen are present, (2) wooden floor staves placed in an emission chamber, and (3) fragments (chips) of the materials mentioned above, placed in glass tubes, exposed to an elevated desorption temperature. The results, presented in the paper, describe the identified odours and their intensity and assign chemical compounds to each odour, indicating their likely source of origin. The results presented in the manuscript are intended to show what methodology can be adopted to obtain intense odours from the tested samples, without losing the sensitivity derived from GC-MS. The manuscript presents representative results-case studies. The results for various types of samples were not very reproducible, related to the complex matrix of bituminous products. The enormity of compounds present in tar adhesives makes it possible to indicate only the groups of compounds that emit from these systems. They include, primarily, aliphatic, aromatic and heteroaromatic hydrocarbons, particularly Naphthalene and Phenol derivatives.
Collapse
Affiliation(s)
- Mateusz Kozicki
- Building Research Institute, Filtrowa 1 Street, 00-611 Warsaw, Poland
| |
Collapse
|
6
|
Song MY, Chun H. Species and characteristics of volatile organic compounds emitted from an auto-repair painting workshop. Sci Rep 2021; 11:16586. [PMID: 34400724 PMCID: PMC8368184 DOI: 10.1038/s41598-021-96163-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Volatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069-8058 ppb, and 24-35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.
Collapse
Affiliation(s)
- M Y Song
- Department of Climate & Environmental Research, Seoul Institute of Technology, Seoul, 03909, Korea.
| | - H Chun
- Department of Climate & Environmental Research, Seoul Institute of Technology, Seoul, 03909, Korea
| |
Collapse
|
7
|
Kozicki M, Guzik K, Deptuła H, Tomaszewska J. Leaching and VOC Emission Tests of Polymer Composites Produced from Post-Consumer Waste in Terms of Application in the Construction Sector. MATERIALS 2021; 14:ma14133518. [PMID: 34202650 PMCID: PMC8269531 DOI: 10.3390/ma14133518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
One of the existing priorities of the European Union is to search for rational waste management and to keep such waste in the economic cycle, while meeting the highest safety requirements. The paper presents the results of environmental tests of composites based on the polyethylene (rPE) and polypropylene (rPP) matrix and reinforced with cellulose fibres (newsprint, NP). Raw materials were obtained by recycling post-consumer waste such as beverage bottles and newsprint. The composites were tested for their potential use as materials in cladding panels and acoustic barriers. Given that normative documents for these products do not define specific environmental requirements, the composites were tested for the release of dangerous substances, such as anions of inorganic compounds, heavy metals, volatile organic compounds (VOCs), and their impact on the environment. A detailed in-depth analysis of the mechanisms of release of substances (diffusion, dissolution, surface leaching and depletion) from the rPP/NP composite into surface water, groundwater and soil was carried out. In turn, emission of VOCs from the rPE (low-density:high-density (LD:HD)-50:50) and rPE (LD:HD-30:70) composites into indoor air was also carried out. Raw materials in the form of granulates and loose cellulose fibres, used to produce the composites, were also tested for their environmental impact.
Collapse
|
8
|
The Ability to Control VOC Emissions from Multilayer Building Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The work aimed to investigate which parameters of the electrically powered radiant floor heating system are connected with the intensity of VOC total emissions and emissions from individual layers, which can be effectively changed and controlled to obtain energy savings in the ventilation process. For this purpose, experimental studies of VOC emissions from specially designed LRFHS samples (Laboratory Radiant Floor Heating System) were carried out, along with simulations of real thermal conditions of samples of layered systems containing separate heaters and various materials layers. The TD-GC-MS chromatography was used to assess the trends of VOCs concentration changes in 480 h in a test chamber (simulating real conditions) for several LRFHS systems of multilayer construction products with built-in individual heating systems, in two stabilised temperatures, 23 °C and 33 °C, two stabilised relative humidities, 50% and 80% and three air exchanges per hour ACH on levels 0.5, 1.0 and 1.5. The obtained results indicate that the models used to determine emissions from single-layer products correspond to the description of emissions from multilayer systems only to a limited extent; some inner layers of floor systems are giving diffusion resistance or intensification of diffusion. A new emission model is proposed. The time-emission concentration curves for dry and wet environments differ significantly; reducing the VOC concentration in the air for the number of exchanges above 1.0 ACH is relatively inefficient. Authors also mapped out new research directions; for example, the experiment showed that not all of the VOC contaminants are ventilated just as easily and perhaps, considering their concentration of resistant impurities, chemical structure and diffusion resistance through the layers, there is a need to determine their weights.
Collapse
|