1
|
Huang B, Chen M, Wang J, Zhang X. Advances in zirconia-based dental materials: Properties, classification, applications, and future prospects. J Dent 2024; 147:105111. [PMID: 38866229 DOI: 10.1016/j.jdent.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVES Zirconia (ZrO2) ceramics are widely used in dental restorations due to their superior mechanical properties, durability, and ever-improving translucency. This review aims to explore the properties, classification, applications, and recent advancements of zirconia-based dental materials, highlighting their potential to revolutionize dental restoration techniques. STUDY SELECTION, DATA AND SOURCES The most recent literature available in scientific databases (PubMed and Web of Science) reporting advances of zirconia-based materials within the dental field is thoroughly examined and summarized, covering the major keywords "dental zirconia, classification, aesthetic, LTD, applications, manufacturing, surface treatments". CONCLUSIONS An exhaustive overview of the properties, classifications, and applications of dental zirconia was presented, alongside an exploration of future prospects and potential advances. This review highlighted the importance of addressing challenges such as low-temperature degradation resistance and optimizing the balance between mechanical strength and translucency. Also, innovative approaches to improve the performances of zirconia as dental material was discussed. CLINICAL SIGNIFICANCE This review provides a better understanding of zirconia-based dental biomaterials for dentists, helping them to make better choice when choosing a specific material to fabricate the restorations or to place the implant. Moreover, new generations of zirconia are still expected to make progress on key issues such as the long-term applications in dental materials while maintaining both damage resistance and aesthetic appeal, defining the directions for future research.
Collapse
Affiliation(s)
- Bo Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengbing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Mayinger F, Ender A, Strickstrock M, Elsayed A, Nassary Zadeh P, Zimmermann M, Stawarczyk B. Impact of the sintering parameters on the grain size, crystal phases, translucency, biaxial flexural strength, and fracture load of zirconia materials. J Mech Behav Biomed Mater 2024; 155:106580. [PMID: 38759588 DOI: 10.1016/j.jmbbm.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVES To investigate the influence of the zirconia and sintering parameters on the optical and mechanical properties. METHODS Three zirconia materials (3/4Y-TZP, 4Y-TZP, 3Y-TZP) were high-speed (HSS), speed (SS) or conventionally (CS) sintered. Disc-shaped specimens nested in 4 vertical layers of the blank were examined for grain size (GS), crystal phases (c/t'/t/m-phase), translucency (T), and biaxial flexural strength. Fracture load (FL) of three-unit fixed dental prostheses was determined initially and after thermomechanical aging. Fracture types were classified, and data statistically analyzed. RESULTS 4Y-TZP showed a higher amount of c + t'-phase and lower amount of t-phase, and higher optical and lower mechanical properties than 3Y-TZP. In all materials, T declined from Layer 1 to 4. 3/4Y-TZP showed the highest FL, followed by 3Y-TZP, while 4Y-TZP showed the lowest. In 4Y-TZP, the sintering parameters exercised a direct impact on GS and T, while mechanical properties were largely unaffected. The sintering parameters showed a varying influence on 3Y-TZP. Thermomechanical aging resulted in comparable or higher FL. CONCLUSION 3/4Y-TZP presenting the highest FL underscores the principle of using strength-gradient multi-layer blanks to profit from high optical properties in the incisal area, while ensuring high mechanical properties in the lower areas subject to tensile forces. With all groups exceeding maximum bite forces, the examined three-unit FDPs showed promising long-term mechanical properties.
Collapse
Affiliation(s)
- Felicitas Mayinger
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany.
| | - Andreas Ender
- Division of Computerized Restorative Dentistry, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Monika Strickstrock
- Faculty of Engineering and Computer Science, Material Science and Analysis, University of Applied Sciences Osnabrück, Albrechtstraße 30, 49076, Osnabrück, Germany
| | - Adham Elsayed
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Parissa Nassary Zadeh
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Marcus Zimmermann
- Division of Computerized Restorative Dentistry, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Bogna Stawarczyk
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| |
Collapse
|
3
|
Hajhamid B, Bozec L, Tenenbaum H, De Souza G, Somogyi-Ganss E. Effect of artificial aging on optical properties and crystalline structure of high-translucency zirconia. J Prosthodont 2024; 33:61-69. [PMID: 36641491 DOI: 10.1111/jopr.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To investigate the effect of different in vitro aging protocols on the optical properties and crystalline structure of high-translucency (HT) zirconia. MATERIALS AND METHODS Thirty-six specimens of HT and extra-high translucency (XT) zirconia were divided into three groups: control (CO)-no treatment; hydrothermal aging (HA)-autoclave aging for 12.5 h at 134°C, 2 bar; clinically related aging (CRA)-aging in the chewing simulator for 1.2 million cycles, followed by 50,000 thermocycles (5-55°C) and immersion in HCl (pH 1.2) for 15 h. Optical properties, crystalline structure, and surface roughness were analyzed and compared using analysis of variance (5% significance level). RESULTS There was no statistically significant effect of aging on translucency (p = 0.10), but CRA promoted the development of a high contrast ratio (p = 0.03). Aging did not cause significant color changes for HT (p = 0.65) or XT (p = 0.36). The proportion of monoclinic crystals increased to 40% for HT-zirconia after HA and 5% after CRA. No monoclinic crystals were detected for XT groups. There was no effect of aging on surface roughness (p = 0.77). CONCLUSIONS Although hydrothermal aging has been widely used to verify zirconia crystalline stability, it did not generate an effect similar to clinically related aging on the optical properties and crystalline structure of zirconia. HA affected the crystalline structure of HT-zirconia, and CRA compromised the optical properties of XT zirconia.
Collapse
Affiliation(s)
- Beshr Hajhamid
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Howard Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Grace De Souza
- Department of Comprehensive Dentistry, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
4
|
Wille S, Möller R, Kern M. Influence of shading on zirconia's phase transformation and flexural strength after artificial aging. Dent Mater 2023; 39:702. [PMID: 37385942 DOI: 10.1016/j.dental.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVES The aim of this study was to determine the phase transformation and the influence of aging on the flexural strength of different colored zirconia. The effect of hydrothermal aging in an autoclave was compared with the effect of mechanical stress by simulating chewing. METHODS High-strength zirconia (3Y-TZP) was investigated in three different colors: uncolored, A3, and D3. Disc-shaped specimens (N = 3) were analyzed by X-ray diffraction (XRD), and flexural strength was determined on bar-shaped specimens (N = 15) in a 4-point bending test before and after performing two different aging protocols: aging in an autoclave (134 °C, 70 h) and aging in a chewing simulator (5 kg load, 1.2 million cycles). During autoclave aging, the fraction of monoclinic phase on the surface was determined every 5 h. Once this exceeded 25 vol%, aging of the bar specimens was stopped. RESULTS While in the unstained group the mean value of the proportion of monoclinic phase already exceeded 25 vol% after 30 h in the autoclave, this was the case in both stained groups only after 70 h. No measurable phase transformation could be detected after chewing simulation. Only color A3 showed a statistically significant (p ≤ 0.05) decrease in flexural strength after aging in the chewing simulator. SIGNIFICANCE The colored zirconia showed a higher resistance to phase transformation through hydrothermal aging. The metal oxides in the staining solutions are assumed to hinder the phase transformation in the zirconia. Therefore, the significant reduction in the stained zirconia after chewing simulation is particularly interesting.
Collapse
Affiliation(s)
- Sebastian Wille
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Germany.
| | - Rüdiger Möller
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Germany.
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Germany.
| |
Collapse
|
5
|
Special Issue: Ceramic and Metallic Biomaterials Nanoparticles for Applications in Medical Sciences. COATINGS 2022. [DOI: 10.3390/coatings12070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nowadays, the development of new materials that can be used to treat, repair, diagnose, replace, or restore a function of the human body represents one of the key research topics for the worldwide scientists and medical industries [...]
Collapse
|
6
|
Rhombohedral Phase Formation in Yttria-Stabilized Zirconia Induced by Dental Technical Tools and Its Impact on Dental Applications. MATERIALS 2022; 15:ma15134471. [PMID: 35806592 PMCID: PMC9267609 DOI: 10.3390/ma15134471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023]
Abstract
In the study the influence of different dental technical tools on the surface temperature and phase composition of fixed dental prostheses (FDPs) made of yttria-partially stabilized zirconia polycrystals (3Y-/4Y-/5Y-PSZ) was investigated. FDPs were fabricated by using computer-aided manufacturing (CAM). The FDPs were treated with a contra-angle handpiece equipped with different burs and polishers. The resulting surface temperatures were measured with a thermographic camera, and the resulting phase transformations were investigated by X-ray diffraction and quantified by Rietveld refinement. Processing with burs resulted in no phase transformation, but a preferred orientation shift. Using coarse polisher induced a phase transformation to the rhombohedral phase, while fine polishers produced no relevant phase transformations and no preferred orientation shift. Compared to the monoclinic phase (ca. 9% theoretical volume increase), which is associated with low-temperature degradation (LTD), the rhombohedral phase is much more voluminous (ca. 15% theoretical volume increase) and distorted and, therefore, has a greater degradation potential.
Collapse
|
7
|
Wertz M, Hoelzig H, Kloess G, Hahnel S, Koenig A. Influence of Manufacturing Regimes on the Phase Transformation of Dental Zirconia. MATERIALS 2021; 14:ma14174980. [PMID: 34501071 PMCID: PMC8434073 DOI: 10.3390/ma14174980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
Background: The influence of typical manufacturing regimes for producing fixed dental prostheses (FDPs) from yttria partly-stabilized zirconia polycrystals (3Y/4Y/5Y-TZP) on the phase composition is quantified. Methods: Fixed dental prostheses (FDPs) were designed using a CAD process and machined from different Y-TZP blanks from two manufacturers differing in yttria contents. Subsequent to sintering, the FDPs were glaze fired and air-blasted using alumina particles. Phase composition was determined with X-ray diffraction and quantified with Rietveld refinement. Results: The blanks from VITA Zahnfabrik (VITA YZ HT, VITA YZ ST, VITA YZ XT) and Dental Direct (DD Bio ZX2, DD cube ONE, DD cube X2) featured a rhombohedral portion with rather small crystallites and a small monoclinic portion for 3Y/4Y-TZPs, which increased after machining and disappeared after sintering. Glaze firing and air-blasting with alumina particles had no significant influence on the phase composition. Conclusion: The phase history of dental zirconia is revealed, which may have implications on further processing and aging of the FDP (e.g. low temperature degradation) in mouth.
Collapse
Affiliation(s)
- Markus Wertz
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany; (M.W.); (S.H.)
| | - Hieronymus Hoelzig
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, 04103 Leipzig, Germany; (H.H.); (G.K.)
| | - Gert Kloess
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, 04103 Leipzig, Germany; (H.H.); (G.K.)
| | - Sebastian Hahnel
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany; (M.W.); (S.H.)
| | - Andreas Koenig
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany; (M.W.); (S.H.)
- Correspondence:
| |
Collapse
|