1
|
Maciejewska M, Rogulska M. Porous Copolymers of 3-(Trimethoxysilyl)propyl Methacrylate with Trimethylpropane Trimethacrylate Preparation: Structural Characterization and Thermal Degradation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4796. [PMID: 39410367 PMCID: PMC11477589 DOI: 10.3390/ma17194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Porous polymeric microspheres are among the most effective adsorbents. They can be synthesized from numerous monomers using different kinds of polymerization techniques with a broad selection of synthesis factors. The main goal of this study was to prepare copolymeric microspheres and establish the relationship between copolymerization parameters and the porosity and thermal stability of the newly synthesized materials. Porous microspheres were obtained via heterogenous radical copolymerization using 3-(trimethoxysilyl)propyl methacrylate (TMPSM) as functional monomers and trimethylolpropane trimethacrylate (TRIM) as the crosslinker. In the course of the copolymerization, toluene or chlorobenzene was used as the pore-forming diluent. Consequently, highly porous microspheres were produced. Their specific surface area was established by a nitrogen adsorption/desorption method and it was in the range of 382 m2/g to 457 m2/g for toluene and 357-500 m2/g in the case of chlorobenzene. The thermal degradation process was monitored by thermogravimetry and differential scanning calorimetry methods in inert and oxidative conditions. The copolymers were stable up to 269-283 °C in a helium atmosphere, whereas in synthetic air the range was 266-298 °C, as determined by the temperature of 5% mass loss. Thermal stability of the investigated copolymers increased along with an increasing TMPSM amount in the copolymerization mixture. In addition, the poly(TMSPM-co-TRIM) copolymers were effectively used as the stationary phase in GC analyses.
Collapse
Affiliation(s)
- Małgorzata Maciejewska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland;
| | | |
Collapse
|
2
|
Maciejewska M. Influence of the Polymerization Parameters on the Porosity and Thermal Stability of Polymeric Monoliths. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2860. [PMID: 38930229 PMCID: PMC11204994 DOI: 10.3390/ma17122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Rigid porous polymeric monoliths are robust, highly efficient, versatile stationary phases. They offer simple preparation and convenient modification provided by a whole range of synthesis factors, e.g., starting monomers, cross-linkers, initiators, porogens, polymerization techniques, and temperature. The main aim of this study was to synthesize polymeric monoliths and determine the correlation between polymerization parameters and the porosity and thermal stability of the obtained materials. Polymeric monoliths were synthesized directly in HPLC columns using N-vinyl-2-pyrrolidone (NVP) and 4-vinylpiridine (4VP) as functional monomers, with trimethylolpropane trimethacrylate (TRIM) serving as the cross-linking monomer. During copolymerization a mixture of cyclohexanol/decane-1-ol was used as the pore-forming diluent. Polymerization was carried out at two different temperatures: 55 and 75 °C. As a result, monoliths with highly developed internal structure were synthesized. The value of their specific surface area was in the range of 92 m2/g to 598 m2/g, depending on the monomer composition and polymerization temperature. Thermal properties of the obtained materials were investigated by means of thermogravimetry (TG). Significant differences in thermal behavior were noticed between monoliths synthesized at 55 and 75 °C. Additionally, the poly(NVP-co-TRIM) monolith was successfully applied in GC analyses.
Collapse
Affiliation(s)
- Małgorzata Maciejewska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33, 20-614 Lublin, Poland
| |
Collapse
|
3
|
Maciejewska M, Józwicki M. Porous Polymers Based on 9,10-Bis(methacryloyloxymethyl)anthracene-Towards Synthesis and Characterization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2610. [PMID: 37048904 PMCID: PMC10095706 DOI: 10.3390/ma16072610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Porous materials can be found in numerous essential applications. They are of particular interest when, in addition to their porosity, they have other advantageous properties such as thermal stability or chemical diversity. The main aim of this study was to synthesize the porous copolymers of 9,10-bis(methacryloyloxymethyl)anthracene (BMA) with three different co-monomers divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA) and trimethylpropane trimethacrylate (TRIM). They were synthesized via suspension polymerization using chlorobenzene and toluene served as porogenic solvents. For the characterization of the synthesized copolymers ATR-FTIR spectroscopy, a low-temperature nitrogen adsorption-desorption method, thermogravimetry, scanning electron microscopy, inverse gas chromatography and size distribution analysis were successfully employed. It was found that depending on the used co-monomer and the type of porogen regular polymeric microspheres with a specific surface area in the range of 134-472 m2/g can be effectively synthesized. The presence of miscellaneous functional groups promotes divergent types of interactions Moreover, all of the copolymers show a good thermal stability up to 307 °C. What is important, thanks to application of anthracene derivatives as the functional monomer, the synthesized materials show fluorescence under UV radiation. The obtained microspheres can be used in various adsorption techniques as well as precursor for thermally resistant fluorescent sensors.
Collapse
|
4
|
McPhee H, Soni V, Saber S, Zargartalebi M, Riordon J, Holmes M, Toews M, Sinton D. Rheological Behavior of Phase Change Slurries for Thermal Energy Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:129-141. [PMID: 36574262 DOI: 10.1021/acs.langmuir.2c02279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phase change materials that leverage the latent heat of solid-liquid transition have many applications in thermal energy transport and storage. When employed as particles within a carrier fluid, the resulting phase change slurries (PCSs) could outperform present-day single-phase working fluids─provided that viscous losses can be minimized. This work investigates the rheological behavior of encapsulated and nonencapsulated phase change slurries (PCSs) for applicability in flowing thermal energy systems. The physical and thermal properties of the PCS candidates, along with their rheological behavior, are investigated below and above their phase transition points at shear rates of 1-300 s-1, temperatures of 20-80 °C, and concentrations of 15-37.5 wt %. The effect of shell robustness and melting on local shear thickening and global shear thinning is discussed, followed by an analysis of the required pumping power. A hysteresis analysis is performed to test the transient response of the PCS under a range of shear rates. We assess the complex viscoelastic behavior by employing oscillatory flow tests and by delineating the flow indices─flow consistency index (K) and flow behavior index (n). We identify a viscosity limit of 0.1 Pa·s for optimal thermal performance in high-flow applications such as renewable geothermal energy.
Collapse
Affiliation(s)
- Hannah McPhee
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Vikram Soni
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Sepehr Saber
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mohammad Zargartalebi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jason Riordon
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Michael Holmes
- Eavor Technologies Inc., Calgary, Alberta T2P 3H9, Canada
| | - Matthew Toews
- Eavor Technologies Inc., Calgary, Alberta T2P 3H9, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
5
|
New Bio-Based Polymer Sorbents out of Terpene Compounds or Vegetable Oils: Synthesis, Properties, Analysis of Sorption Processes. Polymers (Basel) 2022; 14:polym14245389. [PMID: 36559756 PMCID: PMC9784089 DOI: 10.3390/polym14245389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This research presents a synthesis and characterization of new bio-based polymer sorbents. Natural origin substances such as terpenes (citral, limonene, and pinene) or vegetable oils (argan, linseed, and rapeseed oils) were used as monomers, and divinylbenzene was applied as the cross-linker. The newly prepared polymers were characterized by means of ATR-FTIR, TG/DTG and titration methods (acid and iodine values), and N2 physisorption experiments. Tests of sorption ability were carried out by a dynamic solid phase extraction method using a mixture of four phenols or single-component pharmaceutical solutions (salicylic acid, aspirin, ibuprofen, paracetamol, and ampicillin). The performed studies revealed that the terpene-based polymers possessed better-developed porous structures (420-500 m2/g) with more uniform pores than oil-based ones. However, the surface of the oil-based sorbents was more acidic in nature. The sorption tests showed that both the porosity and acidity of the surface significantly influenced the sorption. Recoveries of up to 90% were obtained for 2,4 dichlorophenol from C-DVB, L-DVB, and Ro-DVB. The lowest affinity to the polymers exhibited phenol (5-45%), aspirin (1-7%), and ampicillin (1-7%). A 70% recovery was achieved for ibuprofen from C-DVB. In-depth data analysis allowed the influence of various factors on the sorption process of test compounds of the studied polymers to be elucidated.
Collapse
|
6
|
Maciejewska M. Special Issue: "Structural and Thermal Properties of Polymeric Microspheres". MATERIALS (BASEL, SWITZERLAND) 2022; 15:8017. [PMID: 36431503 PMCID: PMC9692910 DOI: 10.3390/ma15228017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, polymeric materials have become the backbone of modern industry and technology [...].
Collapse
Affiliation(s)
- Małgorzata Maciejewska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland
| |
Collapse
|
7
|
Zhang J, Chen W, Zhai R, Chen H, Shan Z. Application of noise reduction and heat insulation based on controlled-size polystyrene hollow microspheres. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ibadat NF, Ongkudon CM, Saallah S, Misson M. Synthesis and Characterization of Polymeric Microspheres Template for a Homogeneous and Porous Monolith. Polymers (Basel) 2021; 13:3639. [PMID: 34771196 PMCID: PMC8588115 DOI: 10.3390/polym13213639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Monolith is an emerging technology applicable for separation, filtration, and chromatography due to its interconnected pore structure. However, the current templates used to form monolith pores are associated with poor heat dissipation, uneven pore size distribution, and relatively low mechanical strength during monolith scale-up. Templates made from polymeric microsphere particles were synthesized via a solvent evaporation technique using different types of polymer (polystyrene, polycaprolactone, polypropylene, polyethylene, and poly (vinyl-alcohol) at varied polymer (10-40 wt%) and surfactant (5-10%) concentrations. The resulting microsphere particles were tested as a monolith template for the formation of homogenous pores. Among the tested polymers, polystyrene at 10 wt% concentration demonstrated good particle morphology determined to around 1.94-3.45 µm. The addition of surfactant at a concentration of 7-10 wt% during microsphere synthesis resulted in the formation of well-shaped and non-aggregating microsphere particles. In addition, the template has contributed to the production of porous monoliths with enhanced thermal stability. The thermogravimetric analysis (TGA) indicated monolith degradation between 230 °C and 450 °C, implying the material excellent mechanical strength. The findings of the study provide insightful knowledge on the feasibility of polymeric microsphere particles as a pore-directing template to fabricate monoliths with desired pore structures.
Collapse
Affiliation(s)
| | | | | | - Mailin Misson
- Bioprocess Engineering Research Groups, Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (N.F.I.); (C.M.O.); (S.S.)
| |
Collapse
|