1
|
Kloss FR, Kämmerer PW, Kloss-Brandstätter A. First Clinical Case Report of a Xenograft-Allograft Combination for Alveolar Ridge Augmentation Using a Bovine Bone Substitute Material with Hyaluronate (Cerabone ® Plus) Combined with Allogeneic Bone Granules (Maxgraft ®). J Clin Med 2023; 12:6214. [PMID: 37834860 PMCID: PMC10573600 DOI: 10.3390/jcm12196214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND A patient had lost the first left maxillary incisor in the esthetic zone. METHODS The defect in the alveolar ridge was reconstructed for an implant-supported restoration using a new xenogeneic bone substitute containing hyaluronate, which was used in combination with allogeneic bone granules. RESULTS After three years of follow-up, the dental implant was stable and showed no signs of infection. CONCLUSIONS This is the first case report with a long-term follow-up time of three years of a successful clinical application of a xenograft-allograft combination (cerabone® plus combined with maxgraft®) for alveolar ridge augmentation before dental implantation. Cerabone® plus offers volume stability, provides reliable and efficient structural support of the oral soft tissues in the augmented region (particularly crucial in the aesthetic zone), and preserves the alveolar ridge shape.
Collapse
Affiliation(s)
- Frank R. Kloss
- Private Clinic for Oral- and Maxillofacial Surgery, Kärntnerstraße 62, 9900 Lienz, Austria;
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Anita Kloss-Brandstätter
- Department of Engineering & IT, Carinthia University of Applied Sciences, Europastraße 4, 9524 Villach, Austria
| |
Collapse
|
2
|
The Biological Activity of Fragmented Computer-Aided Design/Manufacturing Dental Materials before and after Exposure to Acidic Environment. Medicina (B Aires) 2023; 59:medicina59010104. [PMID: 36676728 PMCID: PMC9866959 DOI: 10.3390/medicina59010104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Three ceramic and composite computer-aided design/computer-aided manufacturing (CAD/CAM) materials from different manufacturers (Cerasmart (CS)-nanoceramic resin; Straumann Nice (SN)-glass ceramic and Tetric CAD (TC)-composite resin) were tested to investigate the biocompatibility and sustainability on human fibroblasts and keratinocytes cells. Each type of CAD/CAM blocks restorative materials with fine and rough surfaces was exposed to an acidic environment for one month. After that, various powders were obtained by milling. In parallel, powders were also prepared from each restorative material, which were not exposed to the acidic environment. The cytotoxic effects were investigated by means of MTT and LDH assays, as well as nitric oxide production on two human normal cell lines, namely, fibroblasts (BJ) and keratinocytes (HaCaT). In addition, the degree of adhesion of fibroblast cells to each CAD/CAM material was evaluated by scanning electron microscopy (SEM). The results showed that the two samples that were exposed to an acidic environment (CS and SN) induced a reduction of mitochondrial activity and plasma membrane damage as regards the fibroblast cells. A similar effect was observed in TC_fine-exposed material, which seemed to induce necrosis at the tested concentration of 1 mg/mL. No oxidative stress was observed in fibroblasts and keratinocytes treated with the CAD/CAM materials. Regarding the adhesion degree, it was found that the fibroblasts adhere to all the occlusal veneers tested, with the mention that the CS and SN materials have a weaker adhesion with fewer cytoplasmic extensions than TC material. With all of this considered, the CAD/CAM restorative materials tested are biocompatible and represent support for the attachment and dispersion of cells.
Collapse
|
3
|
Biologic Impact of Green Synthetized Magnetic Iron Oxide Nanoparticles on Two Different Lung Tumorigenic Monolayers and a 3D Normal Bronchial Model-EpiAirway TM Microtissue. Pharmaceutics 2022; 15:pharmaceutics15010002. [PMID: 36678632 PMCID: PMC9866254 DOI: 10.3390/pharmaceutics15010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The present study reports the successful synthesis of biocompatible magnetic iron oxide nanoparticles (MNPs) by an ecofriendly single step method, using two ethanolic extracts based on leaves of Camellia sinensis L. and Ocimum basilicum L. The effect of both green raw materials as reducing and capping agents was taken into account for the development of MNPs, as well as the reaction synthesis temperature (25 °C and 80 °C). The biological effect of the MNPs obtained from Camellia sinensis L. ethanolic extract (Cs 25, Cs 80) was compared with that of the MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80), by using two morphologically different lung cancer cell lines (A549 and NCI-H460); the results showed that the higher cell viability impairment was manifested by A549 cells after exposure to MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80). Regarding the biosafety profile of the MNPs, it was shown that the EpiAirwayTM models did not elicit important viability decrease or significant histopathological changes after treatment with none of the MNPs (Cs 25, Cs 80 and Ob 25, Ob 80), at concentrations up to 500 µg/mL.
Collapse
|
4
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
5
|
Gabor AG, Duma VF, Fabricky MMC, Marsavina L, Tudor A, Vancea C, Negrea P, Sinescu C. Ceramic Scaffolds for Bone Augmentation: Design and Characterization with SEM and Confocal Microscopy. MATERIALS 2022; 15:ma15144899. [PMID: 35888366 PMCID: PMC9322854 DOI: 10.3390/ma15144899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Bone scaffolds must fulfil numerous and sometimes contradictory characteristics: biocompatibility, bioactivity, high porosity, and appropriate mechanical strength. To tackle some of these issues, this study has several aims for the development of such scaffolds for dentistry applications: (i) to utilize appropriate materials (ceramics and sponges) and to introduce a novel, potentially performant ceramic material; (ii) to characterize the obtained scaffolds by using a range of methods; (iii) to compare and to correlate the assessment results with the scope to validate them reciprocally. There are two commercially available dental ceramics (i.e., Ceramco iC Natural Enamel (E) and Ceramco iC Natural Dentine (D), (DeguDent GmbH, Hanau-Wolfgang, Deutschland)) that are considered, as well as a new-developed porcelain (ceramic C). To obtain porous structures of scaffolds, each ceramic is introduced in two different sponges: a denser one, green (G) and a less dense one, blue (B). A total of 60 samples are manufactured and divided in six study groups, obtained by combining the above materials: GE, BE, GD, BD, GC, and BC (where the first letter represents the sponge type and the second one the utilized ceramic). Several methods are applied to characterize their chemical composition, as well as their macro- and micro-porosity: X-ray Diffraction (XRD), apparent porosity measurements, scanning electronic microscopy (SEM), and confocal microscopy (CM). The latter two methods image the inner (porous) and the outer/cortical (denser) areas of the samples. The results show a good porosity (i.e., dimensions and uniformity of pores) of around 65% for the final group BC, with satisfactory values of around 51% for BD and GC. A certain correlation is made between SEM, CM, and the apparent porosity results. The biocompatibility of the new ceramic C is demonstrated. Finally, a necessary trade-off is made with the mechanical strength of the obtained scaffolds, which was also evaluated. From this point of view, Group BD has the highest compressive strength of around 4 MPa, while Group BC comes second, with around 2 MPa. This trade-off between porosity and mechanical strength suggests a choice between Groups BC and BD, which are the best with regard to the porosity and mechanical strength criterium, respectively.
Collapse
Affiliation(s)
- Alin Gabriel Gabor
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
| | - Virgil-Florin Duma
- 3OM Optomechatronics Group, Faculty of Engineering, Aurel Vlaicu University of Arad, Str. Elena Dragoi No. 2, 310177 Arad, Romania
- Faculty of Mechanics, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania;
- Correspondence: (V.-F.D.); (C.S.); Tel.: +40-751-511-451 (V.-F.D.)
| | - Mihai M. C. Fabricky
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
| | - Liviu Marsavina
- Faculty of Mechanics, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania;
| | - Anca Tudor
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
| | - Cosmin Vancea
- Faculty of Chemistry and Environmental Engineering, Polytechnic University of Timisoara, 6 Vasile Parvan Ave., 300223 Timisoara, Romania; (C.V.); (P.N.)
| | - Petru Negrea
- Faculty of Chemistry and Environmental Engineering, Polytechnic University of Timisoara, 6 Vasile Parvan Ave., 300223 Timisoara, Romania; (C.V.); (P.N.)
| | - Cosmin Sinescu
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
- Correspondence: (V.-F.D.); (C.S.); Tel.: +40-751-511-451 (V.-F.D.)
| |
Collapse
|
6
|
Space Maintainers Used in Pediatric Dentistry: An Insight of Their Biosecurity Profile by Applying In Vitro Methods. MATERIALS 2021; 14:ma14206215. [PMID: 34683807 PMCID: PMC8541494 DOI: 10.3390/ma14206215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
Space maintainers have presented an increased interest due to their chemical composition which influences the electrochemical and electrolytic processes of the oral cavity, leading to important biological activity. The present study was purported to evaluate the biological in vitro activity of three types of space maintainers (S1, S2, and S3, differing from each other in terms of metal composition) used in pediatric dentistry, in terms of their antimicrobial effect and biosecurity profile using two types of keratinocytes (PGK: primary gingival keratinocytes, and HaCaT: human immortalized keratinocytes) by assessing the morphology, viability, cytotoxicity, and gene expression of the cells. Statistical differences were calculated by the one-way ANOVA test, followed by Tukey’s post-test. Antimicrobial screening highlighted a dilution-dependent influence that, in the case of all strains tested, did not show inhibition or stimulation of bacterial growth. The in vitro evaluations revealed that the test samples did not induce important cytotoxic potential on both keratinocyte cell lines (HaCaT and PGK), with the cells manifesting no morphological alteration, a good viability rate (above 90%: PGK–S1, * p < 0.05), and a low cytotoxic activity (less than 11%: PGK, S1 *** p < 0.001 and S3 * p < 0.05; HaCaT, S1 ** p < 0.01). The data obtained in this study highlight the fact that the samples analyzed are biocompatible and do not develop the growth of the studied bacteria or encode the gene expression of primary and immortalized keratinocytes.
Collapse
|
7
|
Nica DF, Gabor AG, Duma VF, Tudericiu VG, Tudor A, Sinescu C. Sinus Lift and Implant Insertion on 3D-Printed Polymeric Maxillary Models: Ex Vivo Training for In Vivo Surgical Procedures. J Clin Med 2021; 10:jcm10204718. [PMID: 34682841 PMCID: PMC8538196 DOI: 10.3390/jcm10204718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: The aim of this study is to demonstrate the increased efficiency achieved by dental practitioners when carrying out an ex vivo training process on 3D-printed maxillaries before performing in vivo surgery. Materials and Methods: This developed ex vivo procedure comprises the following phases: (i) scanning the area of interest for surgery; (ii) obtaining a 3D virtual model of this area using Cone Beam Computed Tomography (CBCT); (iii) obtaining a 3D-printed model (based on the virtual one), on which (iv) the dental practitioner simulates/rehearses ex vivo (most of) the surgery protocol; (v) assess with a new CBCT the 3D model after simulation. The technical steps of sinus augmentation and implant insertion could be performed on the corresponding 3D-printed hemi-maxillaries prior to the real in vivo surgery. Two study groups were considered, with forty patients divided as follows: Group 1 comprises twenty patients on which the developed simulation and rehearsal procedure was applied; Group 2 is a control one which comprises twenty patients on which similar surgery was performed without this procedure (considered in order to compare operative times without and with rehearsals). Results: Following the ex vivo training/rehearsal, an optimal surgery protocol was developed for each considered case. The results of the surgery on patients were compared with the results obtained after rehearsals on 3D-printed models. The performed quantitative assessment proved that, using the proposed training procedure, the results of the in vivo surgery are not significantly different (p = 0.089) with regard to the ex vivo simulation for both the mezio-distal position of the implant and the distance from the ridge margin to sinus window. On the contrary, the operative time of Group 1 was reduced significantly (p = 0.001), with an average of 20% with regard to in vivo procedures performed without rehearsals (on the control Group 2). Conclusions: The study demonstrated that the use of 3D-printed models can be beneficial to dental surgeon practitioners, as well as to students who must be trained before performing clinical treatments.
Collapse
Affiliation(s)
- Diana Florina Nica
- School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 2A Eftimie Murgu Place, 300070 Timisoara, Romania;
| | - Alin Gabriel Gabor
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (A.T.); (C.S.)
| | - Virgil-Florin Duma
- 3OM Optomechatronics Group, Faculty of Engineering, “Aurel Vlaicu” University of Arad, 2 Elena Dragoi, 310177 Arad, Romania
- Doctoral School, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania
- Correspondence: ; Tel.: +40-751-511451
| | | | - Anca Tudor
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (A.T.); (C.S.)
| | - Cosmin Sinescu
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (A.T.); (C.S.)
| |
Collapse
|
8
|
Pop D, Buzatu R, Moacă EA, Watz CG, Cîntă Pînzaru S, Barbu Tudoran L, Nekvapil F, Avram Ș, Dehelean CA, Crețu MO, Nicolov M, Szuhanek C, Jivănescu A. Development and Characterization of Fe 3O 4@Carbon Nanoparticles and Their Biological Screening Related to Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3556. [PMID: 34202095 PMCID: PMC8269588 DOI: 10.3390/ma14133556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
The current study presents the effect of naked Fe3O4@Carbon nanoparticles obtained by the combustion method on primary human gingival fibroblasts (HGFs) and primary gingival keratinocytes (PGKs)-relevant cell lines of buccal oral mucosa. In this regard, the objectives of this study were as follows: (i) development via combustion method and characterization of nanosized magnetite particles with carbon on their surface, (ii) biocompatibility assessment of the obtained magnetic nanoparticles on HGF and PGK cell lines and (iii) evaluation of possible irritative reaction of Fe3O4@Carbon nanoparticles on the highly vascularized chorioallantoic membrane of a chick embryo. Physicochemical properties of Fe3O4@Carbon nanoparticles were characterized in terms of phase composition, chemical structure, and polymorphic and molecular interactions of the chemical bonds within the nanomaterial, magnetic measurements, ultrastructure, morphology, and elemental composition. The X-ray diffraction analysis revealed the formation of magnetite as phase pure without any other secondary phases, and Raman spectroscopy exhibit that the pre-formed magnetic nanoparticles were covered with carbon film, resulting from the synthesis method employed. Scanning electron microscopy shown that nanoparticles obtained were uniformly distributed, with a nearly spherical shape with sizes at the nanometric level; iron, oxygen, and carbon were the only elements detected. While biological screening of Fe3O4@Carbon nanoparticles revealed no significant cytotoxic potential on the HGF and PGK cell lines, a slight sign of irritation was observed on a limited area on the chorioallantoic membrane of the chick embryo.
Collapse
Affiliation(s)
- Daniel Pop
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Claudia Geanina Watz
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Simona Cîntă Pînzaru
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Ștefana Avram
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Marius Octavian Crețu
- Department of Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Mirela Nicolov
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Camelia Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Revolutiei Ave. 1989, No. 9, RO-300041 Timisoara, Romania;
| | - Anca Jivănescu
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| |
Collapse
|