1
|
Chladek G. Composite and Polymeric Materials for Dentistry: Enhancing Antimicrobial and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1432. [PMID: 36837061 PMCID: PMC9964979 DOI: 10.3390/ma16041432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Billions of people suffer from dental problems and that number is constantly increasing [...].
Collapse
Affiliation(s)
- Grzegorz Chladek
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| |
Collapse
|
2
|
Mazzitelli C, Josic U, Maravic T, Mancuso E, Goracci C, Cadenaro M, Mazzoni A, Breschi L. An Insight into Enamel Resin Infiltrants with Experimental Compositions. Polymers (Basel) 2022; 14:polym14245553. [PMID: 36559920 PMCID: PMC9782164 DOI: 10.3390/polym14245553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Resin infiltration is a conservative treatment of initial enamel carious lesions. Only one infiltrant material is available on the market (Icon, DMG), and research is now investigating new chemical compositions so as to further exploit the benefits of the resin infiltration technique. A literature search of the articles testing the effects of different formulations on mechanical properties, resin penetration ability, remineralizing, and antibacterial activities was conducted. Of 238 articles, 29 resulted in being eligible for the literature review. The formulations investigated were all different and consisted in the inclusion of hydrophobic monomers (i.e., BisEMA, UDMA), solvents (ethanol, HEMA), alternative etchants (PAM) or molecules with antibacterial or bioactivity features (i.e., AgNP, YbF3, MTZ, chitosan, DMAMM, HAp, MC-IL, NACP, PUA, CHX) and microfilled resins. Information on the long-term performances of the tested experimental materials were scarce. The combination of TEGDMA with hydrophobic monomers and the inclusion of a solvent alternative to ethanol reinforced mechanical properties of the materials. Hybrid-glass materials demonstrated an enhanced remineralization capacity. Techniques such as tunnelization increased the penetration depth and preserved the recourse to less-conservative treatments. Combining the min-invasive infiltrant approach with remineralizing and bacteriostatic properties would be beneficial for therapeutic and economical aspects, according to the principles of minimally invasive dentistry.
Collapse
Affiliation(s)
- Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, 40125 Bologna, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, 40125 Bologna, Italy
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, 40125 Bologna, Italy
- Correspondence:
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, 40125 Bologna, Italy
| | - Cecilia Goracci
- Dipartimento di Biotecnologie Mediche, University of Siena, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, 34125 Trieste, Italy
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, 40125 Bologna, Italy
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, 40125 Bologna, Italy
| |
Collapse
|
3
|
The Cytotoxicity of OptiBond Solo Plus and Its Effect on Sulfur Enzymes Expression in Human Fibroblast Cell Line Hs27. COATINGS 2022. [DOI: 10.3390/coatings12030382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the study was to determine the cytotoxic concentrations and incubation times of the commonly used dental adhesive system OptiBond Solo Plus in its non-polymerized form, and to test how it relates to oxidative stress by determining the reduced and oxidized glutathione (GSH and GSSG) levels as well as to study its influence on cell number and the expression of selected sulfur enzymes, with particular emphasis on cystathionine γ-lyase (CTH) and 3-mercaptopyruvate (MPST), sulfurtransferase. All investigations were conducted on an in vitro model of human fibroblast cell line Hs27. Changes in cellular plasma membrane integrity were measured by the LDH test. The expression levels were determined by RT-PCR and Western blot protocols. Changes in cell number were visualized using crystal violet staining. The RP-HPLC method was used to determine the GSH and GSSG levels. Reduced cell number was shown for all tested concentrations and times. Changes in the expression on the mRNA and protein level were demonstrated for CTH and MPST enzymes upon exposure to the tested range of OptiBond concentrations. Levels of low-molecular sulfur compounds of reduced and oxidized glutathione were also established. Cytotoxic effect of OptiBond Solo Plus may be connected with the changes of MPST and CTH sulfur enzymes in the human fibroblast Hs27 cell line. The elevated levels of these enzymes could possibly show the antioxidant response to this dental adhesive system. OptiBond Solo Plus in vitro results should be taken into consideration for further in vivo tests.
Collapse
|
4
|
Assessment of the Potential Ability to Penetrate into the Hard Tissues of the Root of an Experimental Preparation with the Characteristics of a Dental Infiltratant, Enriched with an Antimicrobial Component-Preliminary Study. MATERIALS 2021; 14:ma14195654. [PMID: 34640046 PMCID: PMC8510063 DOI: 10.3390/ma14195654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/26/2023]
Abstract
Infiltration is a method of penetration with a low viscosity resin that penetrates deep into demineralised tooth tissue and fills the intergranular spaces, hence reducing porosity. Carious lesions initially located at the enamel–cement junction are usually found in elderly patients. Those spots are predisposed to bacterial adhesion originating both from biofilm and from gingival pocket bacteria. The aim of this study was to evaluate the penetration of an experimental preparation, which has the characteristics of a dental infiltrant, enriched with an antibacterial component, into the decalcified root cement tissues of extracted human teeth in elderly patients. An experimental preparation with the characteristics of a dental infiltrant was prepared, applied, and polymerised on the surface of extracted, previously decalcified human teeth. The control sample was Icon (DMG, Hamburg, Germany). The ability of the preparations to penetrate deep into the root cement was evaluated using scanning electron and light microscopy. The study showed that an experimental preparation could potentially be used for treatment of early carious lesions within the tooth root in elderly patients, among others, as it penetrates deep into demineralised tissues. More research is needed.
Collapse
|