1
|
Mauro N, Calabrese G, Sciortino A, Rizzo MG, Messina F, Giammona G, Cavallaro G. Microporous Fluorescent Poly(D,L-lactide) Acid-Carbon Nanodot Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:449. [PMID: 38255617 PMCID: PMC10820564 DOI: 10.3390/ma17020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
In this study, we introduce novel microporous poly(D,L-lactide) acid-carbon nanodot (PLA-CD) nanocomposite scaffolds tailored for potential applications in image-guided bone regeneration. Our primary objective was to investigate concentration-dependent structural variations and their relevance to cell growth, crucial aspects in bone regeneration. The methods employed included comprehensive characterization techniques such as DSC/TGA, FTIR, rheological, and degradation assessments, providing insights into the scaffolds' thermoplastic behavior, microstructure, and stability over time. Notably, the PLA-CD scaffolds exhibited distinct self-fluorescence, which persisted after 21 days of incubation, allowing detailed visualization in various multicolor modalities. Biocompatibility assessments were conducted by analyzing human adipose-derived stem cell (hADSC) growth on PLA-CD scaffolds, with results substantiated through cell viability and morphological analyses. hADSCs reached a cell viability of 125% and penetrated throughout the scaffold after 21 days of incubation. These findings underscore the scaffolds' potential in bone regeneration and fluorescence imaging. The multifunctional nature of the PLA-CD nanocomposite, integrating diagnostic capabilities with tunable properties, positions it as a promising candidate for advancing bone tissue engineering. Our study not only highlights key aspects of the investigation but also underscores the scaffolds' specific application in bone regeneration, providing a foundation for further research and optimization in this critical biomedical field.
Collapse
Affiliation(s)
- Nicolò Mauro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Alice Sciortino
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Maria G. Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Fabrizio Messina
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Gaetano Giammona
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Gennara Cavallaro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| |
Collapse
|
2
|
Lin Z, Ali MM, Yi X, Zhang L, Wang S, Chen F. Unlocking the Potential of Carbon Quantum Dots for Cell Imaging, Intracellular Localization, and Gene Expression Control in Arabidopsis thaliana (L.) Heynh. Int J Mol Sci 2023; 24:15700. [PMID: 37958684 PMCID: PMC10648342 DOI: 10.3390/ijms242115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Utilizing carbon quantum dots (CQDs) as biomaterials for delivering small substances has gained significant attention in recent research. However, the interactions and mechanisms of action of CQDs on plants have received relatively little focus. Herein, we investigated the transportation of CQDs into various organs of Arabidopsis thaliana (L.) Heynh. via the vessel system, leading to the epigenetic inheritance of Argonaute family genes. Our findings reveal that CQDs may interact with microRNAs (miRNAs), leading to the repression of post-transcriptional regulation of target genes in the cytoplasm. Transcriptome and quantitative PCR analyses demonstrated consistent gene expression levels in offspring. Moreover, microscopic observations illustrated rapid CQD localization on cell membranes and nuclei, with increased nuclear entry at higher concentrations. Notably, our study identified an alternative regulatory microRNA, microRNA172D, for the Argonaute family genes through methylation analysis, shedding light on the connection between CQDs and microRNAs.
Collapse
Affiliation(s)
- Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (X.Y.); (L.Z.); (S.W.); (F.C.)
| | - Xiaoyan Yi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (X.Y.); (L.Z.); (S.W.); (F.C.)
| | - Lijuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (X.Y.); (L.Z.); (S.W.); (F.C.)
| | - Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (X.Y.); (L.Z.); (S.W.); (F.C.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (X.Y.); (L.Z.); (S.W.); (F.C.)
| |
Collapse
|
3
|
Wiśniewski M. The Consequences of Water Interactions with Nitrogen-Containing Carbonaceous Quantum Dots-The Mechanistic Studies. Int J Mol Sci 2022; 23:14292. [PMID: 36430767 PMCID: PMC9694419 DOI: 10.3390/ijms232214292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of quantum dots in a wide range of biological, chemical, and physical processes, the structure of the molecular layers surrounding their surface in solution remains unknown. Thus, knowledge about the interaction mechanism of Nitrogen enriched Carbonaceous Quantum Dots' (N-CQDs) surface with water-their natural environment-is highly desirable. A diffusive and Stern layer over the N-CQDs, characterized in situ, reveals the presence of anionic water clusters [OH(H2O)n]-. Their existence explains new observations: (i) the unexpectedly low adsorption enthalpy (ΔHads) in a pressure range below 0.1 p/ps, and ΔHads being as high as 190 kJ/mol at 0.11 p/ps; (ii) the presence of a "conductive window" isolating nature-at p/ps below 0.45-connected to the formation of smaller clusters and increasing conductivity above 0.45 p/ps, (iii) Stern layer stability; and (iv) superhydrophilic properties of the tested material. These observables are the consequences of H2O dissociative adsorption on N-containing basic centers. The additional direct application of surfaces formed by N-CQDs spraying is the possibility of creating antistatic, antifogging, bio-friendly coatings.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Kurniawan D, Gholami A, Chiang WH. Bioresource-Functionalized Quantum Dots for Energy Generation and Storage: Recent Advances and Feature Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3905. [PMID: 36364683 PMCID: PMC9658778 DOI: 10.3390/nano12213905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The exponential increase in global energy demand in daily life prompts us to search for a bioresource for energy production and storage. Therefore, in developing countries with large populations, there is a need for alternative energy resources to compensate for the energy deficit in an environmentally friendly way and to be independent in their energy demands. The objective of this review article is to compile and evaluate the progress in the development of quantum dots (QDs) for energy generation and storage. Therefore, this article discusses the energy scenario by presenting the basic concepts and advances of various solar cells, providing an overview of energy storage systems (supercapacitors and batteries), and highlighting the research progress to date and future opportunities. This exploratory study will examine the systematic and sequential advances in all three generations of solar cells, namely perovskite solar cells, dye-sensitized solar cells, Si cells, and thin-film solar cells. The discussion will focus on the development of novel QDs that are economical, efficient, and stable. In addition, the current status of high-performance devices for each technology will be discussed in detail. Finally, the prospects, opportunities for improvement, and future trends in the development of cost-effective and efficient QDs for solar cells and storage from biological resources will be highlighted.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| |
Collapse
|
5
|
Yakusheva A, Sayapina A, Luchnikov L, Arkhipov D, Karunakaran G, Kuznetsov D. Carbon Quantum Dots' Synthesis with a Strong Chemical Claw for Five Transition Metal Sensing in the Irving-Williams Series. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:806. [PMID: 35269294 PMCID: PMC8912369 DOI: 10.3390/nano12050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Carbon quantum dots (CQDs) are an excellent eco-friendly fluorescence material, ideal for various ecological testing systems. Herein, we establish uniform microwave synthesis of the group of carbon quantum dots with specific functionalization of ethylenediamine, diethylenetriamine, and three types of Trilon (A, B and C) with chelate claws -C-NH3. CQDs' properties were studied and applied in order to sense metal cations in an aquatic environment. The results provide the determination of the fluorescence quench in dots by pollutant salts, which dissociate into double-charged ions. In particular, the chemical interactions with CQDs' surface in the Irving-Williams series (IWs) via functionalization of the negatively charged surface were ascribed. CQD-En and CQD-Dien demonstrated linear fluorescence quenching in high metal cation concentrations. Further, the formation of claws from Trilon A, Trilon B, and C effectively caught the copper and nickel cations from the solution due to the complexation on CQDs' surface. Moreover, CQD-Trilon C presented chelating properties of the surface and detected five cations (Cu2+, Ni2+, Ca2+, Mg2+, Zn2+) from 0.5 mg/mL to 1 × 10-7 mg/mL in the Irving-William's series. Dependence was mathematically attributed as an equation (ML regression model) based on the constant of complex formation. The reliability of the data was 0.993 for the training database.
Collapse
Affiliation(s)
- Anastasia Yakusheva
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Anastasia Sayapina
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Lev Luchnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Dmitry Arkhipov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea;
| | - Denis Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| |
Collapse
|
6
|
Havrdová M, Urbančič I, Tománková KB, Malina L, Poláková K, Štrancar J, Bourlinos AB. Intracellular Trafficking of Cationic Carbon Dots in Cancer Cell Lines MCF-7 and HeLa-Time Lapse Microscopy, Concentration-Dependent Uptake, Viability, DNA Damage, and Cell Cycle Profile. Int J Mol Sci 2022; 23:1077. [PMID: 35162996 PMCID: PMC8835431 DOI: 10.3390/ijms23031077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated. Based on our previous study, we used quaternized carbon dots (QCDs) for treatment and monitoring the behavior of two human cancer cell MCF-7 and HeLa lines. We found similarities between human cancer cells and mouse fibroblasts in the case of QCDs uptake. Time lapse microscopy of QCDs-labeled MCF-7 cells showed that cells are dying during the first two hours, faster at lower doses than at higher ones. QCDs at a concentration of 100 µg/mL entered into the nucleus before cellular death; however, at a dose of 200 µg/mL, blebbing of the cellular membrane occurred, with a subsequent penetration of QCDs into the nuclear area. In the case of HeLa cells, the dose-depended effect did not happen; however, the labeled cells were also dying in mitosis and genotoxicity occurred nearly at all doses. Moreover, contrasted intracellular compartments, probably mitochondria, were obvious after 24 h incubation with 100 µg/mL of QCDs. The levels of reactive oxygen species (ROS) slightly increased after 24 h, depending on the concentration, thus the genotoxicity was likely evoked by the nanomaterial. A decrease in viability did not reach IC 50 as the DNA damage was probably partly repaired in the prolonged G0/G1 phase of the cell cycle. Thus, the defects in the G2/M phase may have allowed a damaged cell to enter mitosis and undergo apoptosis. The anticancer effect in both cell lines was manifested mainly through genotoxicity.
Collapse
Affiliation(s)
- Markéta Havrdová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Kateřina Bartoň Tománková
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translational Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translational Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Poláková
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
7
|
Czarnecka J, Kwiatkowski M, Wiśniewski M, Roszek K. Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. Int J Mol Sci 2021; 22:ijms22158136. [PMID: 34360901 PMCID: PMC8347256 DOI: 10.3390/ijms22158136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023] Open
Abstract
The oxidative properties of nanomaterials arouse legitimate concerns about oxidative damage in biological systems. On the other hand, the undisputable benefits of nanomaterials promote them for biomedical applications; thus, the strategies to reduce oxidative potential are urgently needed. We aimed at analysis of nitrogen-containing carbon quantum dots (N-CQDs) in terms of their biocompatibility and internalization by different cells. Surprisingly, N-CQD uptake does not contribute to the increased oxidative stress inside cells and lacks cytotoxic influence even at high concentrations, primarily through protein corona formation. We proved experimentally that the protein coating effectively limits the oxidative capacity of N-CQDs. Thus, N-CQDs served as an immobilization support for three different enzymes with the potential to be used as therapeutics. Various kinetic parameters of immobilized enzymes were analyzed. Regardless of the enzyme structure and type of reaction catalyzed, adsorption on the nanocarrier resulted in increased catalytic efficiency. The enzymatic-protein-to-nanomaterial ratio is the pivotal factor determining the course of kinetic parameter changes that can be tailored for enzyme application. We conclude that the above properties of N-CQDs make them an ideal support for enzymatic drugs required for multiple biomedical applications, including personalized medical therapies.
Collapse
Affiliation(s)
- Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (J.C.); (M.W.); (K.R.)
| | - Mateusz Kwiatkowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (J.C.); (M.W.); (K.R.)
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (J.C.); (M.W.); (K.R.)
| |
Collapse
|