1
|
An R, Chen X, Fang Q, Meng Y, Li X, Cao Y. Structure-activity relationship of Cu-based catalysts for the highly efficient CO 2 electrochemical reduction reaction. Front Chem 2023; 11:1141453. [PMID: 36846850 PMCID: PMC9947715 DOI: 10.3389/fchem.2023.1141453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Electrocatalytic carbon dioxide reduction (CO2RR) is a relatively feasible method to reduce the atmospheric concentration of CO2. Although a series of metal-based catalysts have gained interest for CO2RR, understanding the structure-activity relationship for Cu-based catalysts remains a great challenge. Herein, three Cu-based catalysts with different sizes and compositions (Cu@CNTs, Cu4@CNTs, and CuNi3@CNTs) were designed to explore this relationship by density functional theory (DFT). The calculation results show a higher degree of CO2 molecule activation on CuNi3@CNTs compared to that on Cu@CNTs and Cu4@CNTs. The methane (CH4) molecule is produced on both Cu@CNTs and CuNi3@CNTs, while carbon monoxide (CO) is synthesized on Cu4@CNTs. The Cu@CNTs showed higher activity for CH4 production with a low overpotential value of 0.36 V compared to CuNi3@CNTs (0.60 V), with *CHO formation considered the potential-determining step (PDS). The overpotential value was only 0.02 V for *CO formation on the Cu4@CNTs, and *COOH formation was the PDS. The limiting potential difference analysis with the hydrogen evolution reaction (HER) indicated that the Cu@CNTs exhibited the highest selectivity of CH4 among the three catalysts. Therefore, the sizes and compositions of Cu-based catalysts greatly influence CO2RR activity and selectivity. This study provides an innovative insight into the theoretical explanation of the origin of the size and composition effects to inform the design of highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Runzhi An
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Xuanqi Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Qi Fang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuxiao Meng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China,College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China,*Correspondence: Xi Li, ; Yongyong Cao,
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China,*Correspondence: Xi Li, ; Yongyong Cao,
| |
Collapse
|
2
|
Hsiao YS, Chang-Jian CW, Huang TY, Chen YL, Huang JH, Wu NJ, Hsu SC, Chen CP. High-performance supercapacitor based on a ternary nanocomposites of NiO, polyaniline, and Ni/NiO-decorated MWCNTs. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Study of Generalized Hourglass Section in Carbon Nanocone via Connection Number. J CHEM-NY 2021. [DOI: 10.1155/2021/7311757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In 1972, Gutman and Trinajstic showed that total
-energy of a molecule depends upon a numeric quantity which is often called as Zagreb index. In the same report, they also discussed another numeric quantity depending on the number of atoms at a distance two from a particular atom and proved influencing results on
-energy of a molecule. In modern literature, this quantity is named as connection number. In this article, we will describe some Zagreb connection numbers for hourglass section in carbon nanocone network with different lengths of cycle in the central core.
Collapse
|