1
|
Zhao K, Li X, Lei B, Han Y, An T, Zhang W, Zhang H, Li B, Yuan W. Recombinant porcine Interferon-α and Interleukin-2 fusion protein (rPoIFNα+IL-2) shows potent anti-pseudorabies virus activity in vitro and in vivo. Vet Microbiol 2023; 279:109678. [PMID: 36758273 DOI: 10.1016/j.vetmic.2023.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Pseudorabies virus (PRV) variants have been widely prevalent since 2011, leading to substantial losses to the swine industry. Although PRV can cause cross-species transmission and induce human infection, no drugs can currently prevent PRV infection. Interferons (IFNs) and interleukin-2 (IL-2) are important cytokines that mediate several biological functions including antiviral activity and immune regulation. In this study, we expressed and purified a recombinant porcine IFN-α and IL-2 fusion protein (rPoIFNα+IL-2), which did not show a cytotoxic effect on PK-15 cells. The antiviral activity was evaluated in PK-15 cells using the cytopathic effect inhibition method, and the results indicated that rPoIFNα+IL-2 can inhibit the replication of PRV, with an antiviral activity of approximately 104 U/mL. Moreover, the proliferation of peripheral blood mononuclear cells was enhanced by rPoIFNα+IL-2. Additionally, rPoIFNα+IL-2 substantially increased the expression of IFN-stimulated genes, including IFIT1, ISG15, MX1, and OAS, which are critical for antiviral activity. Furthermore, rPoIFNα+IL-2 alleviated the clinical symptoms and reduced mortality in mice infected with PRV. Simultaneously, rPoIFNα+IL-2 increased the expression levels of IFN-γ and IL-10 and inhibited the expression of IL-1β and IL-6. Additionally, the viral DNA copies in different tissues in the rPoIFNα+IL-2-treated group were lower than those in the untreated group. These findings indicate that rPoIFNα+IL-2 may serve as an antiviral agent for the prevention and treatment of PRV infection and may expand the potential function of IFN antiviral drugs in the future.
Collapse
Affiliation(s)
- Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, China
| | - Xiuli Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, China
| | - Ying Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Huiwen Zhang
- Chengde City Veterinary Drug Management Station, Chengde, China
| | - Bosen Li
- Chengde City Veterinary Drug Management Station, Chengde, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
3
|
Oliveira JM, Ribeiro VP, Reis RL. Special Issue: Biopolymer-Based Materials for Biomedical Engineering. MATERIALS 2022; 15:ma15082942. [PMID: 35454635 PMCID: PMC9030867 DOI: 10.3390/ma15082942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
Abstract
In the field of tissue engineering and regenerative medicine (TERM), the use of traditional biomaterials capable of integrating the host tissue to promote the healing and regenerative process while it degrades has become less and less a focus of inspiration [...].
Collapse
Affiliation(s)
- Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (J.M.O.); (V.P.R.); (R.L.R.)
| | - Viviana P. Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (J.M.O.); (V.P.R.); (R.L.R.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (J.M.O.); (V.P.R.); (R.L.R.)
| |
Collapse
|
4
|
Al-Suhaimi EA, Aljafary MA, Alkhulaifi FM, Aldossary HA, Alshammari T, AL-Qaaneh A, Aldahhan R, Alkhalifah Z, Gaymalov ZZ, Shehzad A, Homeida AM. Thymus Gland: A Double Edge Sword for Coronaviruses. Vaccines (Basel) 2021; 9:vaccines9101119. [PMID: 34696231 PMCID: PMC8539924 DOI: 10.3390/vaccines9101119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall’s corpuscles’ epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages’ phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.
Collapse
Affiliation(s)
- Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
- Correspondence: ; Tel.: +966-133-332-444
| | - Meneerah A. Aljafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Fadwa M. Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Hanan A. Aldossary
- Epidemic Diseases Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; or
| | - Thamer Alshammari
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Ayman AL-Qaaneh
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare (JHAH), Dhahran 31311, Saudi Arabia
| | - Razan Aldahhan
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Zahra Alkhalifah
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Zagit Z. Gaymalov
- Earlystage OÜ, Lasnamäe Linnaosa, Sepapaja tn 6, Harju Maakond, 15551 Tallinn, Estonia;
| | - Adeeb Shehzad
- Clinical Pharmacy Research Department, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdelgadir M. Homeida
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| |
Collapse
|