1
|
Reconditioning by Welding of Prosthesis Obtained through Additive Manufacturing. METALS 2022. [DOI: 10.3390/met12071177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompatible titanium alloys are increasingly being used to make custom medical implants using additive manufacturing processes. This paper considered the welding reconditioning of a titanium-alloy customized additive manufactured hip implant with several manufacturing defects. The personalized implants are made starting from a Computer-Aided Design (CAD) model as a direct result from the medical imaging investigations of the areas of interest. Then the customized implant is fabricated using an additive manufacturing process (in this case Powder Bed Fusion—Direct Metal Laser Sintering—DMLS). The analysis of the chemical composition values as well as the values of the mechanical properties of the samples obtained via DMLS additive manufacturing process, revealed that such a manufacturing process can be successfully used to make customized surgical implants. The mechanical properties values of the DMLS samples are approximately equal to those specified by the manufacturer of the titanium powder used for sintering. On average, the tensile strength was found to be 24.75% higher, while yield strength 22.7% higher than the values provided in the standard for surgical implants applications. In case the additive manufacturing process produces products with defects one might want to try and recover the implant due to costs and time constraints. The Tungsten Inert Gas (TIG) welding reconditioning process with ERTi-5 Ti64 rod for welding titanium alloys with a content of 6% aluminum and 4% vanadium filler material was used to restore the geometric characteristics as well as the functional properties of a custom hip medical prosthesis. After welding depositing successive layers of materials, the surfaces of the prosthesis were machined to restore the functional properties according to the characteristics of the original 3D model. A 3D scan was used to compare the geometrical characteristics between the original part and reconditioned one. Deviations were less than 1 mm and were acceptable from the medical point of view.
Collapse
|
2
|
A Simple Method to Obtain Protective Film against Acid Rain. INORGANICS 2022. [DOI: 10.3390/inorganics10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acid rain is a major problem for animals, plants, buildings, and also for the top glass of photovoltaic (PV) solar panels and greenhouses. Air pollutants such as NOx, NH3, and H2S can mix with water in the atmosphere to form acid rain. It was discovered that atmospheric water vapor adsorbed on the surface of glass can also lead to corrosion of the glass surface. The purpose of this work is to obtain a protective film for glasses used in different domains such as solar cells, windows, stained glass windows from historical buildings, etc. Thin film deposited on glass must be protective against acid rain, transparent in the visible domain with a band gap up to 3.2 eV, and have a vitreous structure (glass). Electron beam (e-gun) technology is a deposition technique for producing high-purity and dense coatings in a short time. It is well known that Ta2O5 is an oxide with anticorrosive properties, but it is expensive and cannot form glass by itself. ZnO is an oxide known as a glass former, exhibiting good optical properties. In this paper, a thin film obtained by the deposition of ZnO and Ta2O5 on a glass substrate using e-gun technology are studied. The simulated acid rain effect on the structure, morphology, and optical properties of thin films are studied after a 65% nitric acid attack on the surface. The X-ray diffraction (XRD) pattern shows the vitreous state of the thin film with a composition 50%ZnO 50%Ta2O5 before and after the acid attack. The morphology, composition, and thickness of the film are investigated using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and profilometry.
Collapse
|
3
|
Influence to Hardness of Alternating Sequence of Atomic Layer Deposited Harder Alumina and Softer Tantala Nanolaminates. COATINGS 2022. [DOI: 10.3390/coatings12030404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Atomic layer deposited amorphous 70 nm thick Al2O3-Ta2O5 double- and triple-layered films were investigated with the nanoindentation method. The sequence of the oxides from surface to substrate along with the layer thickness had an influence on the hardness causing rises and declines in hardness along the depth yet did not affect the elastic modulus. Hardness varied from 8 to 11 GPa for the laminates having higher dependence on the structure near the surface than at higher depths. Triple-layered Al2O3/Ta2O5/Al2O3 laminate possessed the most even rise of hardness along the depth and possessed the highest hardness out of the laminates (11 GPa at 40 nm). Elastic modulus had steady values along the depth of the films between 145 and 155 GPa.
Collapse
|