1
|
Şomoghi R, Semenescu A, Pasăre V, Chivu OR, Nițoi DF, Marcu DF, Florea B. The Impact of ZnO Nanofillers on the Mechanical and Anti-Corrosion Performances of Epoxy Composites. Polymers (Basel) 2024; 16:2054. [PMID: 39065371 PMCID: PMC11280588 DOI: 10.3390/polym16142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Epoxy resins were reinforced with different ZnO nanofillers (commercial ZnO nanoparticles (ZnO NPs), recycled ZnO and functionalized ZnO NPs) in order to obtain ZnO-epoxy composites with suitable mechanical properties, high adhesion strength, and good resistance to corrosion. The final properties of ZnO-epoxy composites depend on several factors, such as the type and contents of nanofillers, the epoxy resin type, curing agent, and preparation methods. This paper aims to review the preparation methods, mechanical and anti-corrosion performance, and applications of ZnO-epoxy composites. The epoxy-ZnO composites are demonstrated to be valuable materials for a wide range of applications, including the development of anti-corrosion and UV-protective coatings, for adhesives and the chemical industry, or for use in building materials or electronics.
Collapse
Affiliation(s)
- Raluca Şomoghi
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Street, No. 202, 6th District, 060021 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
- Academy of Romanian Scientists, 3 Ilfov Str., 5th District, 050044 Bucharest, Romania
| | - Vili Pasăre
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| | - Oana Roxana Chivu
- Faculty of Industrial Engineering and Robotics, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (O.R.C.); (D.F.N.)
| | - Dan Florin Nițoi
- Faculty of Industrial Engineering and Robotics, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (O.R.C.); (D.F.N.)
| | - Dragoş Florin Marcu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| | - Bogdan Florea
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| |
Collapse
|
2
|
Arese M, Mania I, Brunella V, Lambertini VG, Gorra R. Evaluation of Aging Effect on the Durability of Antibacterial Treatments Applied on Textile Materials for the Automotive Industry. ACS OMEGA 2024; 9:27169-27176. [PMID: 38947847 PMCID: PMC11209923 DOI: 10.1021/acsomega.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 07/02/2024]
Abstract
The automotive industry is always seeking novel solutions to improve the durability and the performance of textile materials used in vehicles. Indeed, especially after the coronavirus pandemic, antibacterial treatments have gained interest for their potential of ensuring cleanliness and safety toward microbial contamination within vehicles. This study gives a panoramic view of the durability of antibacterial treatments applied on textile materials in the automotive industry, focusing on their performance after experiencing accelerated aging processes. Two different textile materials, a fabric and a synthetic leather, both treated with antibacterial agents, were tested according to ISO 22196 and ISO 20743 standards, respectively, using two model microorganisms, Escherichia coli and Staphylococcus aureus. The impact of mechanical, thermal, and solar aging on the antibacterial properties has been evaluated. In addition, scanning electron microscope (SEM) analysis was performed to investigate the surface morphology of the materials before and after aging. Furthermore, contact angle measurements were conducted. The results suggest that neither mechanical nor thermal aging processes determined diminished antibacterial action. It was determined, instead, that the most damaging stressor for both textile materials was UV aging, causing severe surface alterations and a reduction in antibacterial activity.
Collapse
Affiliation(s)
- Matilde Arese
- Department
of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
- Fiat
Research center SCPA (CRF), Stellantis, Corso Settembrini 40, 10135 Turin, Italy
| | - Ilaria Mania
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Valentina Brunella
- Department
of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Vito Guido Lambertini
- Fiat
Research center SCPA (CRF), Stellantis, Corso Settembrini 40, 10135 Turin, Italy
| | - Roberta Gorra
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
3
|
Primo JDO, Correa JDS, Horsth DFL, Das A, Zając M, Umek P, Wattiez R, Anaissi FJ, Onderwater RCA, Bittencourt C. Antiviral Properties against SARS-CoV-2 of Nanostructured ZnO Obtained by Green Combustion Synthesis and Coated in Waterborne Acrylic Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4345. [PMID: 36500967 PMCID: PMC9740257 DOI: 10.3390/nano12234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic has increased the need for developing disinfectant surfaces as well as reducing the spread of infections on contaminated surfaces and the contamination risk from the fomite route. The present work reports on the antiviral activity of coatings containing ZnO particles obtained by two simple synthesis routes using Aloe vera (ZnO-aloe) or cassava starch (ZnO-starch) as reaction fuel. After detailed characterization using XRD and NEXAFS, the obtained ZnO particles were dispersed in a proportion of 10% with two different waterborne acrylic coatings (binder and commercial white paint) and brushed on the surface of polycarbonates (PC). The cured ZnO/coatings were characterized by scanning electron microscopes (SEM) and energy-dispersive X-ray spectroscopy (EDS). Wettability tests were performed. The virucidal activity of the ZnO particles dispersed in the waterborne acrylic coating was compared to a reference control sample (PC plates). According to RT-PCR results, the ZnO-aloe/coating displays the highest outcome for antiviral activity against SARS-CoV-2 using the acrylic binder, inactivating >99% of the virus after 24 h of contact relative to reference control.
Collapse
Affiliation(s)
- Julia de O. Primo
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Jamille de S. Correa
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
| | - Dienifer F. L. Horsth
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Arkaprava Das
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Marcin Zając
- National Synchrotron Radiation Centre Solaris, Jagiellonian University, 30-392 Kraków, Poland
| | - Polona Umek
- Solid State Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium
| | - Fauze J. Anaissi
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
| | | | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
4
|
Song R, Zhang N, Dong H, Wang P, Ding H, Wang J, Li S. Three-dimensional biomimetic superhydrophobic nickel sponge without chemical modifications for efficient oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|