1
|
Rubino L, Torrisi G, Brambilla L, Rubino L, Ortenzi MA, Galimberti M, Barbera V. Polyhydroxylated Nanosized Graphite as Multifunctional Building Block for Polyurethanes. Polymers (Basel) 2022; 14:polym14061159. [PMID: 35335490 PMCID: PMC8953097 DOI: 10.3390/polym14061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Polyurethane nanocomposites were prepared with a nanosized high surface area graphite (HSAG) functionalized on its edges with hydroxyl groups as a building block. Edge functionalization of HSAG was obtained through reaction with KOH. The addition of OH groups was demonstrated by means of infrared (FTIR) and thermogravimetric analysis (TGA), and the Boehm titration allowed estimation of a level of about 5.0 mmolOH/gHSAG. Results from wide-angle X-ray diffraction (WAXD) and Raman spectroscopy suggested that functionalization of the graphene layers occurred on the edges. The evaluation of the Hansen solubility parameters of G-OH revealed a substantial increase of δP and δH parameters with respect to HSAG. In line with these findings, homogeneous and stable dispersions of G-OH in a polyol were obtained. PU were prepared by mixing a dispersion of G-OH in cis-1,4-butenediol with hexamethylene diisocyanate. A model reaction between catechol, 1,4-butanediol, and hexamethylene diisocyanate demonstrated the reactivity of hydroxylated aromatic rings with isocyanate groups. PU-based G-OH, characterized with WAXD and differential scanning calorimetry (DSC), revealed lower Tg, higher Tc, Tm, and crystallinity than PU without G-OH. These results could be due to the higher flexibility of the polymer chains, likely a consequence of the dilution of the urethane bonds by the carbon substrate. Hence, G-OH allowed the preparation of PU with a larger temperature range between Tg and Tm, with potential positive impact on material applications. The model reaction between butylisocyanate and 1-butanol revealed that HSAG and G-OH promote efficient formation of the urethane bond, even in the absence of a catalyst. The effect of high surface area carbon on the nucleophilic oxygen attack to the isocyanate group can be hypothesized. The results here reported lead us to comment that a reactive nanosized sp2 carbon allotrope, such as G-OH, can be used as a multifunctional building block of PU. Indeed, G-OH is a comonomer of PU, a promoter of the polymerization reaction, and can definitely act as reinforcing filler by tuning its amount in the final nanocomposite leading to highly versatile materials. The larger temperature range between Tg and Tm, together with the presence of G-OH acting as a reinforcing agent, could allow the production of piezoresistive sensing, shape-memory PU with good mechanical features.
Collapse
Affiliation(s)
- Lucia Rubino
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (L.R.); (G.T.); (L.B.); (L.R.)
| | - Giulio Torrisi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (L.R.); (G.T.); (L.B.); (L.R.)
| | - Luigi Brambilla
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (L.R.); (G.T.); (L.B.); (L.R.)
| | - Luca Rubino
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (L.R.); (G.T.); (L.B.); (L.R.)
| | - Marco Aldo Ortenzi
- Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy;
| | - Maurizio Galimberti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (L.R.); (G.T.); (L.B.); (L.R.)
- Correspondence: (M.G.); (V.B.)
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (L.R.); (G.T.); (L.B.); (L.R.)
- Correspondence: (M.G.); (V.B.)
| |
Collapse
|
2
|
Hu F, Gao J, Zhang B, Qi F, Zhao N, Ouyang X. Effects of Modified Al 2O 3-Decorated Ionic Liquid on the Mechanical Properties and Impact Resistance of a Polyurethane Elastomer. MATERIALS 2021; 14:ma14164712. [PMID: 34443234 PMCID: PMC8401536 DOI: 10.3390/ma14164712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
In this work, a new composite material with excellent dynamic impact resistance and outstanding quasi-static mechanical properties was synthesized. The composite material is composed of a polyurethane elastomer and a novel nano-polymer. The nano-polymer was composed of silane coupling agent-modified alumina microspheres and functionalized ionic liquids by double bond polymerization. The universal testing machine and split Hopkinson pressure bar were used to characterize the compression behavior, strength and energy absorption of the composite materials under static and dynamic conditions. Additionally, the comprehensive mechanical properties of polyurethane elastomer with different nano-polymer loadings (0.5–2.5 wt.%) were studied. The results show that whether it was static compression or dynamic impact, the polyurethane elastomer with 1% nano-polymer had the best performance. For the composite material with the best properties, its compressive yield strength under the static compression was about 61.13% higher than that of the pure polyurethane elastomer, and its energy absorption of dynamic impacts was also increased by about 15.53%. Moreover, the shape memory effect was very good (shape recovery is approximately 95%), and the microscopic damage degree was relatively small. This shows that the composite material with the best properties can withstand high compression loads and high-speed impacts. The developed composite material is a promising one for materials science and engineering, especially for protection against compression and impacts.
Collapse
Affiliation(s)
- Fan Hu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (F.H.); (J.G.); (N.Z.); (X.O.)
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Jun Gao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (F.H.); (J.G.); (N.Z.); (X.O.)
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Biao Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (F.H.); (J.G.); (N.Z.); (X.O.)
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- Correspondence: (B.Z.); (F.Q.)
| | - Fugang Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (F.H.); (J.G.); (N.Z.); (X.O.)
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- Correspondence: (B.Z.); (F.Q.)
| | - Nie Zhao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (F.H.); (J.G.); (N.Z.); (X.O.)
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (F.H.); (J.G.); (N.Z.); (X.O.)
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|