1
|
Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2287. [PMID: 37630871 PMCID: PMC10459405 DOI: 10.3390/nano13162287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.
Collapse
Affiliation(s)
- Maroua H. Kaou
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
| | - Mónika Furkó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Katalin Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Csaba Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| |
Collapse
|
2
|
De Luca S, Verdoliva V, Kargozar S, Baino F. Bioactive Glass-Ceramic Scaffolds Coated with Hyaluronic Acid-Fatty Acid Conjugates: A Feasibility Study. J Funct Biomater 2023; 14:jfb14010026. [PMID: 36662073 PMCID: PMC9866274 DOI: 10.3390/jfb14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Promoting bone healing is a key challenge in our society that can be tackled by developing new implantable biomaterials provided with regenerative properties. In this work, the coating of three-dimensional porous glass-derived scaffolds with hyaluronic acid (HA)-fatty acids was investigated for the first time. The starting scaffolds, based on bioactive silicate glass, were produced by foam replication followed by sintering; then, HA-palmitate and HA-oleate conjugate coatings were deposited on the scaffold struts through a dipping procedure. FT-IR analysis confirmed the successful deposition of the coatings on the surface and struts of the scaffolds, the foam-like architecture of which was maintained as assessed by SEM investigations. The in vitro bioactivity of the HA-fatty-acid-coated scaffolds was studied by immersion tests in simulated body fluid and the subsequent evaluation of hydroxyapatite formation. The deposition of the polymeric coating did not inhibit the apatite-forming ability of scaffolds, as revealed by the formation of nanostructured hydroxyapatite agglomerates 48 h from immersion. These promising results motivate further investigation of these novel bioactive systems, which are expected to combine the bone-bonding properties of the glass with the wound-healing promotion carried out by the polymeric conjugates.
Collapse
Affiliation(s)
- Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Valentina Verdoliva
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence:
| |
Collapse
|
3
|
Zheng W, Bai Z, Huang S, Jiang K, Liu L, Wang X. The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis. Int J Mol Sci 2022; 23:12670. [PMID: 36293527 PMCID: PMC9604128 DOI: 10.3390/ijms232012670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
There is still an urgent need for more efficient biological scaffolds to promote the healing of bone defects. Vessels can accelerate bone growth and regeneration by transporting nutrients, which is an excellent method to jointly increase osteogenesis and angiogenesis in bone regeneration. Therefore, we aimed to prepare a composite scaffold that could promote osteogenesis with angiogenesis to enhance bone defect repair. Here, we report that scaffolds were prepared by coaxial electrospinning with mesoporous bioactive glass modified with amino (MBG-NH2) adsorbing insulin-like growth factor-1 (IGF-1) as the core and silk fibroin (SF) adsorbing vascular endothelial growth factor (VEGF) as the shell. These scaffolds were named MBG-NH2/IGF@SF/VEGF and might be used as repair materials to promote bone defect repair. Interestingly, we found that the MBG-NH2/IGF@SF/VEGF scaffolds had nano-scale morphology and high porosity, as well as enough mechanical strength to support the tissue. Moreover, MBG-NH2 could sustain the release of IGF-1 to achieve long-term repair. Additionally, the MBG-NH2/IGF@SF/VEGF scaffolds could significantly promote the mRNA expression levels of osteogenic marker genes and the protein expression levels of Bmp2 and Runx2 in bone marrow mesenchymal stem cells (BMSCs). Meanwhile, the MBG-NH2/IGF@SF/VEGF scaffolds promoted osteogenesis by simulating Runx2 transcription activity through the phosphorylated Erk1/2-activated pathway. Intriguingly, the MBG-NH2/IGF@SF/VEGF scaffolds could also significantly promote the mRNA expression level of angiogenesis marker genes and the protein expression level of CD31. Furthermore, RNA sequencing verified that the MBG-NH2/IGF@SF/VEGF scaffolds had excellent performance in promoting bone defect repair and angiogenesis. Consistent with these observations, we found that the MBG-NH2/IGF@SF/VEGF scaffolds demonstrated a good repair effect on a critical skull defect in mice in vivo, which not only promoted the formation of blood vessels in the haversian canal but also accelerated the bone repair process. We concluded that these MBG-NH2/IGF@SF/VEGF scaffolds could promote bone defect repair under accelerating angiogenesis. Our finding provides a new potential biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Long Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiaoyan Wang
- Correspondence: (L.L.); (X.W.); Tel.: +86-0731-8700-1351 (X.W.); Fax: +86-0731-8700-1040 (X.W.)
| |
Collapse
|
4
|
Tulyaganov DU, Fiume E, Akbarov A, Ziyadullaeva N, Murtazaev S, Rahdar A, Massera J, Verné E, Baino F. In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration. J Funct Biomater 2022; 13:jfb13020074. [PMID: 35735929 PMCID: PMC9224601 DOI: 10.3390/jfb13020074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 01/04/2023] Open
Abstract
Bioactive glasses are often designed as porous implantable templates in which newly-formed bone can grow in three dimensions (3D). This research work aims to investigate the bone regenerative capability of silicate bioactive glass scaffolds produced by robocasting in comparison with powder and granule-like materials (oxide system: 47.5SiO2-10Na2O-10K2O-10MgO-20CaO-2.5P2O5, mol.%). Morphological and compositional analyses performed by scanning electron microscopy (SEM), combined with energy dispersive spectroscopy (EDS) after the bioactivity studies in a simulated body fluid (SBF) confirmed the apatite-forming ability of the scaffolds, which is key to allowing bone-bonding in vivo. The scaffolds exhibited a clear osteogenic effect upon implantation in rabbit femur and underwent gradual resorption followed by ossification. Full resorption in favor of new bone growth was achieved within 6 months. Osseous defect healing was accompanied by the formation of mature bone with abundant osteocytes and bone marrow cells. These in vivo results support the scaffold’s suitability for application in bone tissue engineering and show promise for potential translation to clinical assessment.
Collapse
Affiliation(s)
- Dilshat U. Tulyaganov
- Department of Natural-Mathematical Sciences, Turin Polytechnic University in Tashkent, Tashkent 100095, Uzbekistan;
| | - Elisa Fiume
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Turin, Italy; (E.F.); (E.V.)
| | - Avzal Akbarov
- Department of Prosthodontics, Tashkent State Dental Institute, Tashkent 100047, Uzbekistan; (A.A.); (N.Z.); (S.M.)
| | - Nigora Ziyadullaeva
- Department of Prosthodontics, Tashkent State Dental Institute, Tashkent 100047, Uzbekistan; (A.A.); (N.Z.); (S.M.)
| | - Saidazim Murtazaev
- Department of Prosthodontics, Tashkent State Dental Institute, Tashkent 100047, Uzbekistan; (A.A.); (N.Z.); (S.M.)
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran;
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Turin, Italy; (E.F.); (E.V.)
| | - Francesco Baino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Turin, Italy; (E.F.); (E.V.)
- Correspondence:
| |
Collapse
|
5
|
Lin J, Liu L, Huang S, Zheng W, Liu H, Bai Z, Jiang K, Wang X. PCL nanofibrous incorporating unique matrix fusion protein adsorbed mesoporous bioactive glass for bone tissue engineering. Int J Biol Macromol 2022; 208:136-148. [PMID: 35301005 DOI: 10.1016/j.ijbiomac.2022.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
Mesoporous bioactive glass (MBG) is a potential biomedical material in bone defect repairment because of its bioactivity, biocompatibility, and osteoinduction properties. Here we report that Mg-doped MBG scaffold with 3:1 Ca/Mg ratio (MBG-Ca/Mg-3) is good for MC3T3-E1 osteoblast differentiation and mineralization. Mimicking bone extracellular matrix structure by electrospinning, we used MBG-Ca/Mg-3 adsorbed with Osteocalcin-Osteopontin-Biglycan (OOB), a new unique matrix fusion protein, to form OOB@MBG-Ca/Mg-3 scaffold, which has multifunctional ability in calvarial bone defect repairment in vivo. Intriguingly, we found that OOB@MBG-Ca/Mg-3 scaffold increases the expression of osteoblastic marker genes, including bone morphogenetic protein (Bmp2), osteopontin (Opn), Osterix, Runx2 through activation of ERK1/2. We concluded that OOB@MBG-Ca/Mg-3 scaffold promotes osteoblast differentiation and mineralization through ERK1/2 pathway and it can also enhance bone formation in vivo, which provides a new biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Jiayu Lin
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Long Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Shan Huang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Weijia Zheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Haoming Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Zhenzu Bai
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Kai Jiang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Xiaoyan Wang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China.
| |
Collapse
|
6
|
Sun Y, Lin J, Li L, Jia K, Xia W, Deng C. In vitroand in vivostudy of magnesium containing bioactive glass nanoparticles modified gelatin scaffolds for bone repair. Biomed Mater 2022; 17. [PMID: 35226881 DOI: 10.1088/1748-605x/ac5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Magnesium containing bioactive glass nanoparticles modified gelatin scaffolds (MBGNs/Gel scaffolds) have shown recently the potential for bone regeneration due to its good biocompatibility, bioresorbability and bioactivity. Nevertheless, its use is limited by its complicated manufacturing process and a relatively expensive price. In this study, MBGNs were prepared by sol-gel process. The MBGNs/Gel was synthesized by a simple immersion method. SEM, transmission electron microscopy and dynamic light scattering analysis showed that the particles had spherical morphology with mean particle size of 100 nm. The MBGNs/Gel scaffolds were observed by SEM. The scaffolds showed connected pore structure with pore size ranging from 100 to 300 μm. SEM images with high magnification showed the existence of MBGNs on the surface of micro-pores. The ion release results revealed the release of Mg, Ca and Si elements from the MBGNs. MTT assay and cytotoxicity studies indicated that, the scaffolds provide a suitable ion related micro-environment for cell attachment and spreading. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) results showed the scaffolds could promote the osteogenesis of MC3T3-E1. Thein vivostudy also showed higher amount of new bone and trabecular bone which indicated excellent bone induction and conduction property of modified scaffolds. So, the developed MBGNs/Gel scaffolds are a potential candidate for bone regeneration applications.
Collapse
Affiliation(s)
- Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Jie Lin
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - LeiLei Li
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Kai Jia
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Wen Xia
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| |
Collapse
|