1
|
Lisiecka K, Dziki D, Karaś M. Physical and Functional Properties of Powders Obtained during Spray Drying of Cyani flos Extracts. Molecules 2024; 29:3400. [PMID: 39064978 PMCID: PMC11279533 DOI: 10.3390/molecules29143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Edible flowers are a potential source of bioactive ingredients and are also an area of scientific research. Particularly noteworthy are Cyani flos, which have a wide range of uses in herbal medicine. The below study aimed to investigate the influence of selected soluble fiber fractions on the selected properties of physical and biochemical powders obtained during spray drying a water extract of Cyani flos. The drying efficiency for the obtained powders was over 60%. The obtained powders were characterized by low moisture content (≤4.99%) and water activity (≤0.22). The increase in the addition of pectin by the amount of 2-8% in the wall material resulted in a decrease in hygroscopicity, water solubility, and protection of flavonoids and anthocyanins both before and after digestion in the tested powders in comparison to the sample with only inulin as a carrier. Additionally, it was noted that all samples were characterized by high bioaccessibility when determining antioxidant properties and xanthine oxidase inhibition.
Collapse
Affiliation(s)
- Katarzyna Lisiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland;
| |
Collapse
|
2
|
Różyło R, Gładyszewski G, Chocyk D, Dziki D, Świeca M, Matwijczuk A, Rząd K, Karcz D, Gawłowski S, Wójcik M, Gawlik U. The Influence of Micronization on the Properties of Black Cumin Pressing Waste Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2501. [PMID: 38893765 PMCID: PMC11173985 DOI: 10.3390/ma17112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024]
Abstract
The purpose of this study was to investigate the effect of micronization on the characteristics of black cumin pressing waste material. The basic composition, amino acid, and fatty acid content of the raw material-specifically, black cumin pressing waste material-were determined. The samples were micronized in a planetary ball mill for periods ranging from 0 to 20 min. The particle sizes of micronized samples of black cumin pressing waste material were then examined using a laser analyzer, the Mastersizer 3000. The structures of the produced micronized powders was examined by X-ray diffraction. Additionally, the FTIR (Fourier-transform infrared) spectra of the micronized samples were recorded. The measurement of phenolic and antiradical properties was conducted both before and after in vitro digestion, and the evaluation of protein digestibility and trypsin inhibition was also conducted. The test results, including material properties, suggest that micronization for 10 min dramatically reduced particle diameters (d50) from 374.7 to 88.7 µm, whereas after 20 min, d50 decreased to only 64.5 µm. The results obtained using FTIR spectroscopy revealed alterations, especially in terms of intensity and, to a lesser extent, the shapes of the bands, indicating a significant impact on the molecular properties of the tested samples. X-ray diffraction profiles revealed that the internal structures of all powders are amorphous, and micronization methods have no effect on the internal structures of powders derived from black cumin pressing waste. Biochemical analyses revealed the viability of utilizing micronized powders from black cumin pressing waste materials as beneficial food additives, since micronization increased total phenolic extraction and antiradical activity.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Grzegorz Gładyszewski
- Department of Applied Physics, Lublin University of Technology, 20-618 Lublin, Poland; (G.G.); (D.C.)
| | - Dariusz Chocyk
- Department of Applied Physics, Lublin University of Technology, 20-618 Lublin, Poland; (G.G.); (D.C.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland; (M.Ś.); (U.G.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences, 20-950 Lublin, Poland; (A.M.); (K.R.)
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Klaudia Rząd
- Department of Biophysics, University of Life Sciences, 20-950 Lublin, Poland; (A.M.); (K.R.)
| | - Dariusz Karcz
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 31-155 Krakow, Poland
| | - Sławomir Gawłowski
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Monika Wójcik
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland; (M.Ś.); (U.G.)
| |
Collapse
|
3
|
Laya A. Physicochemical Composition and Antioxidant Activity of Five Gari Processed from Cassava Roots ( Manihot esculenta Crantz) Harvested at Two Different Maturity Stages and Two Seasons. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4779424. [PMID: 37920786 PMCID: PMC10620029 DOI: 10.1155/2023/4779424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Gari is a partially gelatinized roasted fermented granular white or yellowish product made from storage roots of cassava. It is consumed as fast foods in many countries across the world. Physicochemical composition, particle size, colour, and antioxidant activities of five gari (92/0326, 96/1414, IRAD4115, EN, and AD) processed from fresh storage roots harvested at 12 months after planting (MAP) and 15MAP compared to four (4) commercial gari (M1, M2, M3, and M4) were evaluated. The analytical results revealed that colour value b∗ and particle size varied significantly (p < 0.05) among the gari samples. Bound flavonoid contents were lower than free flavonoids (3.93 to 10.50 mgQE/100 g and 2.40 to 8.85 mgQE/100 g, respectively). Fourier transform infrared confirmed the functional groups in all gari samples. The antioxidant activity of the bound phenolics showed significantly (p < 0.05) higher DPPH scavenging ability than free phenolics (gari M2: 2.70 μgTE/g). Similarly, the bound phenolics showed significant (p < 0.05) variation of HRSA scavenging activity (0.18-35.09 μgTE/g). However, the best HRSA scavenging activity was found with bound phenolics of gari 96/1414, whereas HRSA scavenging activity was not detected in gari 92/0326, 96/1414, and AD. The value of ABTS scavenging activity of gari varied significantly (p < 0.05) from 20.60 to 30.17 μgTE/g and from 20.70 to 34.39 for free and bound phenolics, respectively, while free phenolics showed higher FRAP value (7.97 mgTE/g) than the bound phenolics (4.59 mgTE/g). Additionally, phenolics and antioxidant activities showed significantly (p < 0.05) a positive correlation. The present study has provided an insight into the physicochemical composition, bioactive compounds, and antioxidant activities of various gari processed at different season and maturity period of harvesting. It reveals that consumers of cassava gari can get health benefits apart from the nutritional values.
Collapse
Affiliation(s)
- Alphonse Laya
- Department of Biology Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
- Fruit and Vegetable Technology Department, CSIR-Central Food Technology Research Institute, Mysuru 570020, India
| |
Collapse
|
4
|
Biernacka B, Dziki D, Różyło R, Gawlik-Dziki U, Nowak R, Pietrzak W. Common Wheat Pasta Enriched with Ultrafine Ground Oat Husk: Physicochemical and Sensory Properties. Molecules 2023; 28:7197. [PMID: 37894676 PMCID: PMC10608821 DOI: 10.3390/molecules28207197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Oat husk (hull) is a byproduct of oat processing that is rich in insoluble fiber. The aim of the study was to evaluate the effect of partially replacing wheat flour with oat husk (at levels of 0, 5, 10, 15, and 20 g/100 g) on the physicochemical properties and sensory acceptance of pasta. Additionally, UPLC-MS/MS analysis was performed to identify phenolic acids and flavonoid compounds, and the cooking properties of the pasta were evaluated. The test results indicate that oat husk significantly (p < 0.05) increased the ash and fiber contents in the pasta, while decreasing the protein and fat contents. Moreover, the redness and yellowness of both raw and cooked pasta increased, while lightness decreased as a result of pasta enrichment with oat husk. Oat husk also led to a decrease in the stretching force of cooked samples, although cooking loss increased significantly but did not exceed 8%. The contents of phenolics and antioxidant activity significantly increased with the incorporation of hull in pasta recipes. UPLC-MS/MS analysis showed that the enriched pasta was especially abundant in ferulic acid. Products with up to 10 g of husk/100 g of wheat flour showed good consumer acceptance. However, higher levels of this additive led to notably lower assessments, particularly in terms of pasta texture.
Collapse
Affiliation(s)
- Beata Biernacka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-835 Lublin, Poland; (R.N.)
| | - Wioleta Pietrzak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-835 Lublin, Poland; (R.N.)
| |
Collapse
|
5
|
Lisiecka K, Dziki D, Gawlik-Dziki U, Świeca M, Różyło R. Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts. Foods 2023; 12:3363. [PMID: 37761072 PMCID: PMC10527584 DOI: 10.3390/foods12183363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to assess the impact of inulin and pectin, wherein pectin replaced inulin with weight ranging from 2% to 8%, as wall materials on various aspects: bioactive component content, antioxidant and anti-inflammatory properties, bioavailability, powder recovery during the drying process, and selected physical characteristics of powders derived from Malvae arboreae flos aqueous extracts obtained through spray drying. Powders containing a soluble fraction of fiber demonstrated a recovery efficiency of over 50% during drying, along with low moisture content, water activity, and hygroscopicity, coupled with high solubility. The incorporation of pectin up to 8% did not significantly alter the color profile of the powders. However, at levels of 4% to 8% pectin, concave distortions and particle morphology cracks became noticeable, along with the potential to form agglomerates (evident when the span index ranged between 5.11 and 14.51). The substitution of inulin with pectin led to higher total contents of flavonoids (from 1.31% to 49.57% before digestion, and from 18.92% to 36.48% after digestion) and anthocyanins (from 45.79% to 78.56% before digestion, and from 65.45% to 521.81% after digestion) compared to samples containing only inulin as a carrier. Bioacceptability values exceeding 100% indicated effective preservation of compounds responsible for ferric-reducing antioxidant power, as well as the inhibition of xanthine oxidase and cyclooxygenase-2 across all samples.
Collapse
Affiliation(s)
- Katarzyna Lisiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka St. 28, 20-612 Lublin, Poland
| |
Collapse
|
6
|
Wójcik M, Dziki D, Matwijczuk A, Gawlik-Dziki U. Walnut Flour as an Ingredient for Producing Low-Carbohydrate Bread: Physicochemical, Sensory, and Spectroscopic Characteristics. Foods 2023; 12:3320. [PMID: 37685252 PMCID: PMC10486641 DOI: 10.3390/foods12173320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Walnut flour (WF) is a nutrient-rich source that can be used as an alternative for individuals on a gluten-free diet. This study aimed to assess the physical, chemical, and sensory changes in low-carbohydrate bread when supplemented with WF. Molecular-level changes were also examined using ATR-FTIR spectra. The bread recipe, containing buckwheat and flaxseed, was enriched with WF at levels ranging from 5% to 20%. The addition of WF resulted in increased loaf volume and decreased baking loss. Enriched bread samples showed higher protein content, while fat and available carbohydrate content decreased. Additionally, WF incorporation led to a decrease in crumb brightness and an increase in redness (from 23.1 to 25.4) and yellowness (from 23.8 to 26.7). WF also increased crumb hardness and chewiness. Moreover, the tested additives primarily influenced the intensity of FTIR spectra, indicating changes in protein, carbohydrate, and fat content, with increased band intensity observed in the protein region. We particularly recommend bread with a WF content of 15%. This type of bread is characterized by high consumer acceptance. Furthermore, compared to bread without the addition of WF, it has a higher content of phenolic compounds, protein, and fat by approximately 40%, 8%, and 4%, respectively. The antioxidant activity of this bread, determined using the ABTS and DPPH methods, is also significantly higher compared to the control bread.
Collapse
Affiliation(s)
- Monika Wójcik
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Institute of Molecular Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| |
Collapse
|
7
|
Różyło R, Amarowicz R, Janiak MA, Domin M, Gawłowski S, Kulig R, Łysiak G, Rząd K, Matwijczuk A. Micronized Powder of Raspberry Pomace as a Source of Bioactive Compounds. Molecules 2023; 28:4871. [PMID: 37375425 DOI: 10.3390/molecules28124871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Red raspberries, which contain a variety of nutrients and phytochemicals that are beneficial for human health, can be utilized as a raw material in the creation of several supplements. This research suggests micronized powder of raspberry pomace production. The molecular characteristics (FTIR), sugar, and biological potential (phenolic compounds and antioxidant activity) of micronized raspberry powders were investigated. FTIR spectroscopy results revealed spectral changes in the ranges with maxima at ~1720, 1635, and 1326, as well as intensity changes in practically the entire spectral range analyzed. The discrepancies clearly indicate that the micronization of the raspberry byproduct samples cleaved the intramolecular hydrogen bonds in the polysaccharides present in the samples, thus increasing the respective content of simple saccharides. In comparison to the control powders, more glucose and fructose were recovered from the micronized samples of the raspberry powders. The study's micronized powders were found to contain nine different types of phenolic compounds, including rutin, elagic acid derivatives, cyanidin-3-sophoroside, cyanidin-3-(2-glucosylrutinoside), cyanidin-3-rutinoside, pelargonidin-3-rutinoside, and elagic acid derivatives. Significantly higher concentrations of ellagic acid and ellagic acid derivatives and rutin were found in the micronized samples than in the control sample. The antioxidant potential assessed by ABTS and FRAP significantly increased following the micronization procedure.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Michał Adam Janiak
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marek Domin
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland
| | - Sławomir Gawłowski
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Ryszard Kulig
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Grzegorz Łysiak
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Klaudia Rząd
- Department of Biophysics, Institute of Molecular Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Institute of Molecular Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Tech-Nologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033 Lublin, Poland
| |
Collapse
|
8
|
Budiman A, Rusdin A, Aulifa DL. Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics. Antioxidants (Basel) 2023; 12:378. [PMID: 36829937 PMCID: PMC9952677 DOI: 10.3390/antiox12020378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The aqueous solubility of a drug is important in the oral formulation because the drug can be absorbed from intestinal sites after being dissolved in the gastrointestinal fluid, leading to its bioavailability. Almost 80% of active pharmaceutical ingredients are poorly water-soluble, including antioxidant compounds. This makes antioxidant activity inefficient in preventing disease, particularly for orally administered formulations. Although several investigations have been carried out to improve the solubility of antioxidant compounds, there is still limited research fully discussing the subject. Therefore, this study aimed to provide an overview and discussion of the issues related to the methods that have been used to improve the solubility and activity of antioxidant compounds. Articles were found using the keywords "antioxidant" and "water solubility improvement" in the Scopus, PubMed, and Google Scholar databases. The selected articles were published within the last five years to ensure all information was up-to-date with the same objectives. The most popular methods of the strategies employed were solid dispersion, co-amorphous, and nanoparticle drug delivery systems, which were used to enhance the solubility of antioxidant compounds. These investigations produced impressive results, with a detailed discussion of the mechanism of improvement in the solubility and antioxidant activity of the compounds developed. This review shows that the strategies used to increase the solubility of antioxidant compounds successfully improved their antioxidant activity with enhanced free radical scavenging abilities.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacy, Poltekkes Kemenkes Bandung, Bandung 40161, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
9
|
Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems. Molecules 2022; 27:molecules27238174. [PMID: 36500267 PMCID: PMC9740432 DOI: 10.3390/molecules27238174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Micronization is an emerging technology used in food production, in which the size of particles is reduced to microns in the processing of plant raw materials and by-products, thus making it an interesting research topic. Spinach stems are by-products of spinach leaf processing, but there is little information regarding their processing and possible reuse. In this study, wet and dry ball mill micronization, in combination with freeze drying, was used to process spinach stems and leaves to obtain functional powders. The color and particle size of the micronized spinach leaf and stem powders were evaluated. The antioxidant activity (AA) of the powders and phenolic compounds present in them were determined using GC-MS analysis. The results obtained showed that the dry micronization of leaves and stems resulted in smoother and brighter powders than wet micronization. Significantly smaller particle sizes were achieved using the dry micronization of the leaves and stems (Dv50 = 19.5 and 10.1 µm, respectively) rather than wet micronization (Dv50 = 84.6 and 112.5 µm, respectively). More phenolic compounds, such as o-coumaric acid and gallic acid, were extracted from the dry-micronized powders. The dry micronization of the stems significantly increased the total phenolic content, and the AA of these powders was also increased. These findings demonstrate that spinach leaves and stems subjected to dry micronization can be valuable functional components of food.
Collapse
|
10
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Kanari N, Shallari S, Allain E. Processing of End-of-Life Materials and Industrial Wastes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7662. [PMID: 36363253 PMCID: PMC9654877 DOI: 10.3390/ma15217662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This Special Issue (SI) offered the opportunity to present the latest scientific developments and findings in the field of processing of end-of-life materials and solid industrial wastes. Due to the large quantity of wastes generated and to their complex elemental and mineralogical composition, the approaches, methods and processes proposed for their decontamination, energy beneficiation and high-added-value metal recovery are complex and diverse. Some transversal research investigations using wastes as remediation agents and for synthesis of new materials were also included in the SI. After a brief introduction, the main scientific contributions and findings of each article published in the SI are summarized.
Collapse
Affiliation(s)
- Ndue Kanari
- Université de Lorraine, CNRS, GeoRessources, F-54000 Nancy, France
| | - Seit Shallari
- Faculty of Agriculture and Environment, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Eric Allain
- Université de Lorraine, CNRS, GeoRessources, F-54000 Nancy, France
| |
Collapse
|
12
|
Dziki D, Gawlik-Dziki U, Tarasiuk W, Różyło R. Fiber Preparation from Micronized Oat By-Products: Antioxidant Properties and Interactions between Bioactive Compounds. Molecules 2022; 27:molecules27092621. [PMID: 35565971 PMCID: PMC9099853 DOI: 10.3390/molecules27092621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
This study aimed to investigate the possibility of utilizing oat by-products for fiber preparation. Oat husk (OH) and oat bran (OB) were micronized and used to prepare a novel product rich in fiber and with enhanced antioxidant properties. The basic chemical composition and phenolic acid profile were determined in OH and OB. The antioxidant properties of OH and OB were also analyzed. The type and strength of interactions between the biologically active compounds from their mixtures were characterized by an isobolographic analysis. The analyses showed that the sum of phenolic acids was higher in OH than in OB. Ferulic acid was dominant in both OH and OB; however, its content in OH was over sixfold higher than that in OB. The results also suggested that both OH and OB can be used for preparing fiber with enhanced antioxidant properties. The optimal composition of the preparation, with 60–70% of OH and 30–40% of OB, allows for obtaining a product with 60–70% fiber and enhanced antioxidant activity due to bioactive substances and their synergistic effect. The resulting product can be a valuable additive to various food and dietary supplements.
Collapse
Affiliation(s)
- Dariusz Dziki
- Poland Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
| | - Urszula Gawlik-Dziki
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
- Correspondence:
| | - Wojciech Tarasiuk
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
- Faculty of Mechanical Engineering Bialystok, Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka St. 28, 20-950 Lublin, Poland;
| |
Collapse
|
13
|
Abstract
Rye (Secale cereale L.) is abundantly cultivated in countries like Europe and North America, particularly in regions where soil and climate conditions are unfavorable for the growth of other cereals. Among all the cereals generally consumed by human beings, rye grains are characterized by the presence of the highest content of fiber. They are also a rich source of many phytochemical compounds, which are mainly distributed in the outer parts of the grain. This review focuses on the current knowledge regarding the characteristics of rye bran and wholemeal rye flour, as well as their applications in the production of both food and nonfood products. Previous studies have shown that the physicochemical properties of ground rye products are determined by the type of milling technique used to grind the grains. In addition, the essential biologically active compounds found in rye grains were isolated and characterized. Subsequently, the possibility of incorporating wholemeal rye flour, rye bran, and other compounds extracted from rye bran into different industrial products is discussed.
Collapse
|