1
|
Heudorfer K, Bauer J, Caydamli Y, Gompf B, Take J, Buchmeiser MR, Middendorf P. Method of Manufacturing Structural, Optically Transparent Glass Fiber-Reinforced Polymers (tGFRP) Using Infusion Techniques with Epoxy Resin Systems and E-Glass Fabrics. Polymers (Basel) 2023; 15:polym15092183. [PMID: 37177328 PMCID: PMC10180623 DOI: 10.3390/polym15092183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, fiber-reinforced, epoxy-based, optically transparent composites were successfully produced using resin transfer molding (RTM) techniques. Generally, the production of structural, optically transparent composites is challenging since it requires the combination of a very smooth mold surface with a sufficient control of resin flow that leads to no visible voids. Furthermore, it requires a minimum deviation of the refractive indices (RIs) of the matrix polymer and the reinforcement fibers. Here, a new mold design is described and three plates of optically transparent glass fiber-reinforced polymers (tGFRP) with reproducible properties as well as high fiber volume fractions were produced using the RTM process and in situ polymerization of an epoxy resin system enclosing E-glass fiber textiles. Their mechanical (flexural), microstructural (fiber volume fraction, surface roughness, etc.), thermal (DSC, TGA, etc.), and optical (dispersion curves of glass fibers and polymer as well as transmission over visible spectra curves of the tGFRP at varying tempering states) properties were evaluated. The research showed improved surface quality and good transmission data for samples manufactured by a new Optical-RTM setup compared to a standard RTM mold. The maximum transmission was reported to be ≈74%. In addition, no detectable voids were found in these samples. Furthermore, a flexural modulus of 23.49 ± 0.64 GPa was achieved for the Optical-RTM samples having a fiber volume fraction of ≈42%.
Collapse
Affiliation(s)
- Klaus Heudorfer
- Institute of Aircraft Design (IFB), University of Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
| | - Johannes Bauer
- Institute of Aircraft Design (IFB), University of Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
| | - Yavuz Caydamli
- Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- German Institutes of Textile and Fiber Research (DITF), Körschtalstr 26, D-73770 Denkendorf, Germany
| | - Bruno Gompf
- 1st Physics Institute, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Jens Take
- Institute of Aircraft Design (IFB), University of Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
| | - Michael R Buchmeiser
- Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- German Institutes of Textile and Fiber Research (DITF), Körschtalstr 26, D-73770 Denkendorf, Germany
| | - Peter Middendorf
- Institute of Aircraft Design (IFB), University of Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
| |
Collapse
|
2
|
Chutturi M, Gillela S, Yadav SM, Wibowo ES, Sihag K, Rangppa SM, Bhuyar P, Siengchin S, Antov P, Kristak L, Sinha A. A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161067. [PMID: 36565890 DOI: 10.1016/j.scitotenv.2022.161067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The uncertainties of the environment and the emission levels of nonrenewable resources have compelled humanity to develop sustainable energy savers and sustainable materials. One of the most abundant and versatile bio-based structural materials is wood. Wood has several promising advantages, including high toughness, low thermal conductivity, low density, high Young's modulus, biodegradability, and non-toxicity. Furthermore, while wood has many ecological and structural advantages, it does not meet optical transparency requirements. Transparent wood is ideal for use in various industries, including electronics, packaging, automotive, and construction, due to its high transparency, haze, and environmental friendliness. As a necessary consequence, current research on developing fine wood is summarized in this review. This review begins with an explanation of the history of fine wood. The concept and various synthesis strategies, such as delignification, refractive index measurement methods, and transparent lumber polymerization, are discussed. Approaches and techniques for the characterization of transparent wood are outlined, including microscopic, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analysis. Furthermore, the characterization, physical properties, mechanical properties, optical properties, and thermal conductivity of transparent wood are emphasized. Eventually, a brief overview of the various applications of fine wood is presented. The present review summarized the first necessary actions toward future transparent wood applications.
Collapse
Affiliation(s)
- Mahesh Chutturi
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India
| | - Swetha Gillela
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India
| | - Sumit Manohar Yadav
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India; Centre of Advanced Materials, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Eko Setio Wibowo
- Research Center for Biomaterials, National Research and Innovation of Indonesia, Cibinong 16911, Indonesia; Department of Wood and Paper Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kapil Sihag
- Department of Forest Products and Utilization, Forest College and Research Institute, Hyderabad 502279, Telangana, India
| | - Sanjay Mavinkere Rangppa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), 10800 Bangkok, Thailand
| | - Prakash Bhuyar
- International College (MJU-IC), Maejo University, Chiang Mai 50290, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), 10800 Bangkok, Thailand
| | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria
| | - Lubos Kristak
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Arijit Sinha
- Department of Wood Science and Engineering, Oregon State University, 234 Richardson Hall, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Recycling of Thermoset Materials and Thermoset-Based Composites: Challenge and Opportunity. Polymers (Basel) 2022; 14:polym14194153. [PMID: 36236101 PMCID: PMC9570833 DOI: 10.3390/polym14194153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Thermoset materials and their composites are characterized by a long life cycle with their main applications in aircrafts, wind turbines and constructions as insulating materials. Considering the importance of recovery and valorization of these materials at their end-of-life, avoiding landfilling, the interest concerning their recycling grows continuously. The thermoset materials and their composites, to be successfully recovered and valorized, must degrade their three-dimensional structures and recover the mono-oligomers and/or fillers. The thermoset materials could successfully degrade through thermal treatment at different temperatures (for example, above 1000 °C for incineration, ca. 500 °C for oxidation/combustion of organic constituents, etc.), chemical degradation by catalyst, irradiation with or without the presence of water, alcohol, etc., and mechanical recycling, obtaining fine particles that are useful as filler and/or reinforcement additives. Among these recycling methods, this mini-review focuses on the formulation and recovery method of innovative thermoset with in-build recyclability, i.e., materials having chemical links that could be degraded on-demand or containing dynamic covalent bonds to have re-processable and/or recyclable thermoset. This issue could be considered the future perspective in developing novel thermoset materials. The aim of this review is to get an overview of the state of the art in thermoset recycling and of the most commonly used thermoset composites, recovering valuable reinforcing fibers. Additionally, in this work, we also report not only known recycling routes for thermoset and thermoset-based composites, but also new and novel formulating strategies for producing thermosets with built-in recyclability, i.e., containing chemical-triggered on-demand links. This mini-review is also a valuable guide for educational purposes for students and specialized technicians in polymer production and recycling.
Collapse
|
4
|
Li W, Liu G, Bao J, Dong S, Hu X, Yi X, Lin Z. Effects of the Interlayer Toughening Agent Structure on the Flow Behavior during the z-RTM Process. MATERIALS 2022; 15:ma15093265. [PMID: 35591599 PMCID: PMC9105894 DOI: 10.3390/ma15093265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
In this paper, interlayer toughening composites were prepared by the z-directional injection RTM process (z-RTM), which has the advantage of increasing the interlaminar toughness and shortening the filling time and completely impregnating the fibers. The nonwoven fabrics and dot matrix structure material were used as ex situ interlayer toughening agents. The effect of the interlayer toughening agent structure on the resin flow behavior during the z-RTM process was investigated. The macro-flowing and micro-infiltration behaviors of the resin inside the preforms were deduced. The permeability of the fabric preforms with different toughening agents was investigated. The results show that the introduction of the nonwoven structure toughening agent makes the macro flow slow, and the flow front more uniform. The toughening agent with a dot matrix structure promotes the resin macro flow in the preforms, and shortens the injection time. The z-directional permeability of the preform with a dot matrix structural toughening agent is one order of magnitude lower than that of the non-toughened preform, while being higher than the preform toughened by the nonwoven fabric preforms, which is helpful for the further applicability of the z-RTM process. Furthermore, the mode II interlaminar fracture toughness of composites was evaluated.
Collapse
Affiliation(s)
- Weidong Li
- Key Laboratory of Advanced Composite, Composite Technology Center, AVIC Composite Corporation Ltd., Beijing 101300, China; (W.L.); (G.L.); (X.Y.)
| | - Gang Liu
- Key Laboratory of Advanced Composite, Composite Technology Center, AVIC Composite Corporation Ltd., Beijing 101300, China; (W.L.); (G.L.); (X.Y.)
| | - Jianwen Bao
- Key Laboratory of Advanced Composite, Composite Technology Center, AVIC Composite Corporation Ltd., Beijing 101300, China; (W.L.); (G.L.); (X.Y.)
- Correspondence: (J.B.); (S.D.)
| | - Shuhua Dong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China;
- Correspondence: (J.B.); (S.D.)
| | - Xiaolan Hu
- College of Materials, Xiamen University, Xiamen 361005, China;
| | - Xiaosu Yi
- Key Laboratory of Advanced Composite, Composite Technology Center, AVIC Composite Corporation Ltd., Beijing 101300, China; (W.L.); (G.L.); (X.Y.)
| | - Zhitao Lin
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China;
| |
Collapse
|