1
|
Robles D, Brizuela A, Fernández-Domínguez M, Gil J. Corrosion Resistance and Titanium Ion Release of Hybrid Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103650. [PMID: 37241275 DOI: 10.3390/ma16103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
One of the strategies for the fight against peri-implantitis is the fabrication of titanium dental implants with the part close to the neck without roughness. It is well known that roughness favors osseointegration but hinders the formation of biofilm. Implants with this type of structure are called hybrid dental implants, which sacrifice better coronal osseointegration for a smooth surface that hinders bacterial colonization. In this contribution, we have studied the corrosion resistance and the release of titanium ions to the medium of smooth (L), hybrid (H), and rough (R) dental implants. All implants were identical in design. Roughness was determined with an optical interferometer and residual stresses were determined for each surface by X-ray diffraction using the Bragg-Bentano technique. Corrosion studies were carried out with a Voltalab PGZ301 potentiostat, using Hank's solution as an electrolyte at a temperature of 37 °C. Open-circuit potentials (Eocp), corrosion potential (Ecorr), and current density (icorr) were determined. Implant surfaces were observed by JEOL 5410 scanning electron microscopy. Finally, for each of the different dental implants, the release of ions into Hank's solution at 37 °C at 1, 7, 14, and 30 days of immersion was determined by ICP-MS. The results, as expected, show a higher roughness of R with respect to L and compressive residual stresses of -201.2 MPa and -20.2 MPa, respectively. These differences in residual stresses create a potential difference in the H implant corresponding to Eocp of -186.4 mV higher than for the L and R of -200.9 and -192.2 mV, respectively. The corrosion potentials and current intensity are also higher for the H implants (-223 mV and 0.069 μA/mm2) with respect to the L (-280 mV and 0.014 μA/mm2 and R (-273 mV and 0.019 μA/mm2). Scanning electron microscopy revealed pitting in the interface zone of the H implants and no pitting in the L and R dental implants. The titanium ion release values to the medium are higher in the R implants due to their higher specific surface area compared to the H and L implants. The maximum values obtained are low, not exceeding 6 ppb in 30 days.
Collapse
Affiliation(s)
- Daniel Robles
- Department of Translational Medicine CEU, San Pablo University, Urbanización Montepríncipe, Alcorcón, 28925 Madrid, Spain
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Manuel Fernández-Domínguez
- Department of Oral and Maxillofacial Surgery, Hospital Monteprincipe, University CEU San Pablo, Av. de Montepríncipe s/n, Alcorcón, 28668 Madrid, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
2
|
Rodriguez-González R, Monsalve-Guil L, Jimenez-Guerra A, Velasco-Ortega E, Moreno-Muñoz J, Nuñez-Marquez E, Pérez RA, Gil J, Ortiz-Garcia I. Relevant Aspects of Titanium Topography for Osteoblastic Adhesion and Inhibition of Bacterial Colonization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093553. [PMID: 37176435 PMCID: PMC10180273 DOI: 10.3390/ma16093553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The influence of the surface topography of dental implants has been studied to optimize titanium surfaces in order to improve osseointegration. Different techniques can be used to obtain rough titanium, however, their effect on wettability, surface energy, as well as bacterial and cell adhesion and differentiation has not been studied deeply. Two-hundred disks made of grade 4 titanium were subjected to different treatments: machined titanium (MACH), acid-attacked titanium (AE), titanium sprayed with abrasive alumina particles under pressure (GBLAST), and titanium that has been treated with GBLAST and then subjected to AE (GBLAST + AE). The roughness of the different treatments was determined by confocal microscopy, and the wettability was determined by the sessile drop technique; then, the surface energy of each treatment was calculated. Osteoblast-like cells (SaOs-2) were cultured, and alkaline phosphatase was determined using a colorimetric test. Likewise, bacterial strains S. gordonii, S. oralis, A. viscosus, and E. faecalis were cultured, and proliferation on the different surfaces was determined. It could be observed that the roughness of the GBLAST and GBLAS + AE was higher, at 1.99 and 2.13 μm of Ra, with respect to the AE and MACH samples, which were 0.35 and 0.20 μm, respectively. The abrasive treated surfaces showed lower hydrophilicity but lower surface energy. Significant differences could be seen at 21 days between SaOS-2 osteoblastic cell adhesion for the blasted ones and higher osteocalcin levels. However, no significant differences in terms of bacterial proliferation were observed between the four surfaces studied, demonstrating the insensitivity of bacteria to topography. These results may help in the search for the best topographies for osteoblast behavior and for the inhibition of bacterial colonization.
Collapse
Affiliation(s)
- Raquel Rodriguez-González
- Bioengineering Institute of Technology, Faculty of Dentistry, Universitat Internacional de Catalunya, Sant Cugat del Vallé, 08198 Barcelona, Spain
| | | | | | | | | | | | - Roman A Pérez
- Bioengineering Institute of Technology, Faculty of Dentistry, Universitat Internacional de Catalunya, Sant Cugat del Vallé, 08198 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Faculty of Dentistry, Universitat Internacional de Catalunya, Sant Cugat del Vallé, 08198 Barcelona, Spain
| | | |
Collapse
|
3
|
Padulles-Gaspar E, Padulles-Roig E, Cabanes G, Pérez RA, Gil J, Bosch BM. Effects of Hypochlorous Acid and Hydrogen Peroxide Treatment on Bacterial Disinfection Treatments in Implantoplasty Procedures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2953. [PMID: 37109795 PMCID: PMC10144543 DOI: 10.3390/ma16082953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
One of the main problems in oral implantology today is peri-implantitis, which affects almost 20% of dental implants placed in patients. One of the most commonly used techniques to eliminate bacterial biofilm is the implantoplasty, that consists of the mechanical modification of the implant surface topography followed by treatments with chemical reagents for decontamination. In this study, the main aim is to evaluate the use of two different chemical treatments based on hypochlorous acid (HClO) and hydrogen peroxide (H2O2). For this purpose, 75 titanium grade 3 discs were treated with implantoplasty according to established protocols. Twenty-five discs were used as controls, 25 were treated with concentrated HClO and 25 were treated with concentrated HClO followed by treatment with 6% H2O2. The roughness of the discs was determined using the interferometric process. Cytotoxicity with SaOs-2 osteoblastic cells was quantified at 24 and 72 h, whereas bacteria proliferation using S. gordonii and S. oralis bacteria was quantified at 5 s and 1 min of treatment. The results showed an increase in the roughness values, the control discs had an Ra of 0.33 μm and those treated with HClO and H2O2 reached 0.68 μm. Cytotoxicity was present at 72 h, together with a significant proliferation of bacteria. These biological and microbiological results can be attributed to the roughness produced by the chemical agents that triggered bacterial adsorption while inhibiting osteoblast adhesion. The results indicate that even if this treatment can decontaminate the titanium surface after implantation, the produced topography will generate an environment that will not favor long-term performance.
Collapse
Affiliation(s)
- Esteban Padulles-Gaspar
- Facultad de Odontología, Universitat Internacional de Catalunya, C/Josep Trueta s/n, 08195 Barcelona, Spain
| | - Esteban Padulles-Roig
- Department of Implantology, University of La Salle, Madrid, EDE, C7Gaminedes 11, 28023 Madrid, Spain
| | - Guillermo Cabanes
- Department of Implantology, University of La Salle, Madrid, EDE, C7Gaminedes 11, 28023 Madrid, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
4
|
Herrero-Climent M, Punset M, Molmeneu M, Brizuela A, Gil J. Differences between the Fittings of Dental Prostheses Produced by CAD-CAM and Laser Sintering Processes. J Funct Biomater 2023; 14:jfb14020067. [PMID: 36826866 PMCID: PMC9959825 DOI: 10.3390/jfb14020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023] Open
Abstract
Digital dentistry and new techniques for the dental protheses' suprastructure fabrication have undergone a great evolution in recent years, revolutionizing the quality of dental prostheses. The aim of this work is to determine whether the best horizontal marginal fit is provided by the CAD-CAM technique or by laser sintering. These values have been compared with the traditional casting technique. A total of 30 CAD-CAM models, 30 laser sintering models, and 10 casting models (as control) were fabricated. The structures realized with chromium-cobalt (CrCo) have been made by six different companies, always with the same model. Scanning electron microscopy with a high-precision image analysis system was used, and 10,000 measurements were taken for each model on the gingival (external) and palatal (internal) side. Thus, a total of 1,400,000 images were measured. It was determined that the CAD-CAM technique is the one that allows the best adjustments in the manufacturing methods studied. The laser sintering technique presents less adjustment, showing the presence of porosities and volume contraction defects due to solidification processes and heterogeneities in the chemical composition (coring). The technique with the worst adjustments is the casting technique, containing numerous defects in the suprastructure. The statistical analysis of results reflected the presence of statistically significant gap differences between the three manufacturing methods analyzed (p < 0.05), with the samples manufactured by CAD-CAM and by traditional casting processes being the ones that showed lower and higher values, respectively. No statistically significant differences in fit were observed between the palatal and gingival fit values, regardless of the manufacturing method used. No statistically significant differences in adjustment between the different manufacturing centers were found, regardless of the process used.
Collapse
Affiliation(s)
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Meritxell Molmeneu
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Faculty of Medicine and Health Sciences, International University of Catalonia, Josep Trueta s/n, 08195 Barcelona, Spain
- Correspondence:
| |
Collapse
|
5
|
Camps-Font O, Toledano-Serrabona J, Juiz-Camps A, Gil J, Sánchez-Garcés MA, Figueiredo R, Gay-Escoda C, Valmaseda-Castellón E. Effect of Implantoplasty on Roughness, Fatigue and Corrosion Behavior of Narrow Diameter Dental Implants. J Funct Biomater 2023; 14:61. [PMID: 36826860 PMCID: PMC9967762 DOI: 10.3390/jfb14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Implantoplasty (IP) is used in dental implants with peri-implantitis and aims to remove threads and polish rough surfaces in order to prevent bacterial colonization. As a result of this procedure, implant strength might be compromised. We tested 20 tapered screw-shaped Ti6Al4V dental implants with a simulated bone loss of 50%. Ten implants underwent IP and 10 served as controls. Surface topography (Sa, Sz, Ssk, and Sdr) was analyzed with a confocal optical microscope. Subsequently, a minimum of four series of cyclic loads were applied with a servo-hydraulic mechanical testing machine (5 × 106 cycles at 15 Hz, between a maximal nominal value-starting at 529 N in the IP group and 735 N in the control group-and 10% of that force). We recorded the number of cycles until failure and the type of failure. Implant failure was analyzed by visual inspection and scanning electron microscopy. Open circuit potential and potenctiodynamic tests were carried out with high precision potentiostat using Hank's solution at 37 °C to evaluate the effect of the implantoplasty on the corrosion resistance. Implantoplasty significantly reduced the surface topography values (median) and interquartile range (IQR); Sa from 1.76 (IQR = 0.11) to 0.49 (IQR = 0.16), Sz from 20.98 (IQR = 8.14) to 8.19 (IQR = 4.16), Ssk from 0.01 (IQR = 0.34) to -0.74 (IQR = 0.53) and Sdr from 18.20 (IQR = 2.26) to 2.67 (IQR = 0.87). The fatigue limits of the control and implantoplasty groups were 551 N and 529 N, respectively. The scanning electron micrographs showed fatigue striations indicating fatigue failure. Besides, the fractographic analysis revealed a typical brittle intergranular fracture mechanism. The infinite life range of the dental implants evaluated was largely above the threshold of usual chewing forces. Implantoplasty seems to render a fairly smooth surface and has a limited impact on fatigue resistance. In addition, implantoplasty produces a decrease in the corrosion resistance of the implant. Corrosion current density from 0.019 μA/cm2 for as-received to 0.069 μA/cm2 in the interface smooth-roughened dental implant. These places between the machining and the rough area of the implant are the most susceptible, with the appearance of pitting.
Collapse
Affiliation(s)
- Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Ana Juiz-Camps
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencia de la Salud, Universitat Internacional de Catalunya, Sant Cugat del Vallés, 08907 Barcelona, Spain
| | - Maria Angeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Rui Figueiredo
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| |
Collapse
|
6
|
Toledano-Serrabona J, Camps-Font O, de Moraes DP, Corte-Rodríguez M, Montes-Bayón M, Valmaseda-Castellón E, Gay-Escoda C, Sánchez-Garcés MÁ. Ion release and local effects of titanium metal particles from dental implants: An experimental study in rats. J Periodontol 2023; 94:119-129. [PMID: 35678251 PMCID: PMC10087269 DOI: 10.1002/jper.22-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The objective of this study was to evaluate the accumulation of ions in blood and organs caused by titanium (Ti) metal particles in a mandibular defect in rats, together with a description of the local reaction of oral tissues to this Ti alloy debris. METHODS Twenty Sprague-Dawley rats were randomly distributed into three groups: an experimental group with a mandibular bone defect filled with metallic debris obtained by implantoplasty; a positive control group; and a negative control group. Thirty days after surgery, the rats were euthanized and perilesional tissue surrounding the mandibular defect was removed, together with the lungs, spleen, liver, and brain. Two blood samples were collected: immediately before surgery and before euthanasia. The perilesional tissue was histologically analyzed using hematoxylin-eosin staining, and Ti, aluminum, and vanadium ion concentrations in blood and organs were measured by TQ-ICP-MS. Descriptive and bivariate analyses of the data were performed. RESULTS All rats with implanted metal debris showed metal particles and a bone fracture callus on the osseous defect. The metal particles were surrounded by a foreign body reaction characterized by the presence of histiocytes and multinucleated giant cells (MNGCs). The experimental group had a significant higher concentration of Ti ions in all studied organs except lung tissue (p < 0.05). In addition, there were more V ions in the brain in the experimental group (p = 0.008). CONCLUSIONS Although further studies are required to confirm the clinical relevance of these results, Ti metal particles in the jaw might increase the concentration of metal ions in vital organs and induce a foreign body reaction.
Collapse
Affiliation(s)
- Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Diogo Pompéu de Moraes
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - M Ángeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
7
|
Toledano-Serrabona J, Bosch BM, Díez-Tercero L, Gil FJ, Camps-Font O, Valmaseda-Castellón E, Gay-Escoda C, Sánchez-Garcés MÁ. Evaluation of the inflammatory and osteogenic response induced by titanium particles released during implantoplasty of dental implants. Sci Rep 2022; 12:15790. [PMID: 36138061 PMCID: PMC9500064 DOI: 10.1038/s41598-022-20100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Implantoplasty is a mechanical decontamination technique that consists of removing the threads and polishing and smoothing the dental implant surface. During implantoplasty there is a large release of titanium metal particles that might provoke a proinflammatory response and reduce the viability of osteogenic cells. We analyze the inflammatory and osteogenic response induced by Ti6Al4V particles released during implantoplasty and by as-received commercially pure Ti particles. Macrophages stimulated with metal particles obtained by implantoplasty and with as-received Ti particles showed an increased proinflammatory expression of TNF-α and a decreased expression of TGF-β and CD206. Regarding cytokine release, there was an increase in IL-1β, while IL-10 decreased. The osteogenic response of Ti6Al4V extracts showed a significant decrease in Runx2 and OC expression compared to the controls and commercially pure Ti extracts. There were no relevant changes in ALP activity. Thus, implantoplasty releases metal particles that seems to induce a pro-inflammatory response and reduce the expression of osteogenic markers.
Collapse
Affiliation(s)
- Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Begoña M Bosch
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - F Javier Gil
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain.
- Faculty of Dentistry, International University of Catalonia, Sant Cugat del Vallès, Spain.
| | - Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mª Ángeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
8
|
Callejas JA, Gil J, Brizuela A, Pérez RA, Bosch BM. Effect of the Size of Titanium Particles Released from Dental Implants on Immunological Response. Int J Mol Sci 2022; 23:ijms23137333. [PMID: 35806339 PMCID: PMC9266706 DOI: 10.3390/ijms23137333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we performed a simulation of particle generation following clinical protocols. The particles were characterized for commercially pure titanium with particle sizes of 5, 10, 15, and 30 μm. The aim was to determine the effect of particle size and chemical composition of the implant on the immune response. For this purpose, their morphology and possible contamination were characterized by scanning electron microscopy and X-ray microanalysis. In addition, the granulometry, specific surface area, release of metal ions into the medium, and studies of cytocompatibility, gene expression, and cytokine release linked to the inflammatory process were studied. The release of ions for titanium particles showed levels below 800 ppb for all sizes. Smaller particle sizes showed less cytotoxicity, although particles of 15 μm presented higher levels of cytocompatibility. In addition, inflammatory markers (TNFα and Il-1β) were higher compared to larger titanium. Specifically, particles of 15 μm presented a lower proinflammatory and higher anti-inflammatory response as characterized by gene expression and cytokine release, compared to control or smaller particles. Therefore, in general, there is a greater tendency for smaller particles to produce greater toxicity and a greater proinflammatory response.
Collapse
Affiliation(s)
- Juan Antonio Callejas
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
- Correspondence: (J.G.); (B.M.B.)
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C. del Padre Julio Chevalier 2, 47012 Valladolid, Spain;
| | - Román A. Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
- Correspondence: (J.G.); (B.M.B.)
| |
Collapse
|
9
|
The Characterization of Titanium Particles Released from Bone-Level Titanium Dental Implants: Effect of the Size of Particles on the Ion Release and Cytotoxicity Behaviour. MATERIALS 2022; 15:ma15103636. [PMID: 35629663 PMCID: PMC9148149 DOI: 10.3390/ma15103636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
Many studies are being carried out on the particles released during the implantoplasty process in the machining of dental implants to remove bacterial biofilms. However, there are no studies on the release of particles produced by the insertion of bone-level dental implants due to the high compressive frictional loads between the rough titanium implant and the bone tissue. This paper aims to characterize the released particles and determine the release of titanium ions into the physiological environment and their cytocompatibility. For this purpose, 90 dental implants with a neck diameter of 4 mm and a torque of 22 Ncm were placed in 7 fresh cow ribs. The placement was carried out according to the established protocols. The implants had a roughness Ra of 1.92 μm. The arrangement of the particles in the bone tissue was studied by micro-CT, and no particle clusters were observed. The different granulometries of 5, 15, and 30 μm were obtained; the specific surface area was determined by laser diffraction; the topography was determined by scanning electron microcopy; and the particles were chemically analysed by X-ray energy microanalysis. The residual stresses of the particles were obtained by X-ray diffraction using the Bragg-Bentano configuration. The release of titanium ions to the physiological medium was performed using ICP-MS at 1, 3, 7, 14, and 21 days. The cytocompatibility of the particles with HFF-1 fibroblast and SAOS-2 osteoblast cultures was characterized. The results showed that the lowest specific surface area (0.2109 m2/g) corresponds to the particles larger than 30 μm being higher than 0.4969 and 0.4802 m2/g of those that are 5 and 15 μm, respectively, observing in all cases that the particles have irregular morphologies without contamination of the drills used in the surgery. The highest residual stresses were found for the small particles, -395 MPa for the 5 μm particles, and -369 for the 15 μm particles, and the lowest residual stresses were found for the 30 μm particles with values of -267 MPa. In all cases, the residual stresses were compressive. The lowest ion release was for the 30 μm samples, as they have the lowest specific surface area. Cytocompatibility studies showed that the particles are cytocompatible, but it is the smallest ones that are lower and very close to the 70% survival limit in both fibroblasts and osteoblasts.
Collapse
|
10
|
Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics 2022; 14:455. [PMID: 35214186 PMCID: PMC8876580 DOI: 10.3390/pharmaceutics14020455] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
An increase in the world population and its life expectancy, as well as the ongoing concern about our physical appearance, have elevated the relevance of dental implantology in recent decades. Engineering strategies to improve the survival rate of dental implants have been widely investigated, focusing on implant material composition, geometry (usually guided to reduce stiffness), and interface surrounding tissues. Although efforts to develop different implant surface modifications are being applied in commercial dental prostheses today, the inclusion of surface coatings has gained special interest, as they can be tailored to efficiently enhance osseointegration, as well as to reduce bacterial-related infection, minimizing peri-implantitis appearance and its associated risks. The use of biomaterials to replace teeth has highlighted the need for the development of reliable analytical methods to assess the therapeutic benefits of implants. This literature review considers the state-of-the-art strategies for surface modification or coating and analytical methodologies for increasing the survival rate for teeth restoration.
Collapse
Affiliation(s)
- Francesca Accioni
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Juan Vázquez
- Departamento de Química Orgánica, Universidad de Sevilla, 41012 Seville, Spain;
| | - Manuel Merinero
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| |
Collapse
|
11
|
Impact of Remelting in the Microstructure and Corrosion Properties of the Ti6Al4V Fabricated by Selective Laser Melting. COATINGS 2022. [DOI: 10.3390/coatings12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The presence of defects like porosity and lack of fusion can negatively affect the properties of the materials manufactured by Selective Laser Melting (SLM). The optimization of the manufacturing conditions allows reducing the number of defects, but there is a limit for each manufacturing material and process. To expand the manufacturing envelope, a remelting after every layer of the SLM process has been used to manufacture Ti6Al4V alloy samples using an SLM with a CO2 laser. The effect of this processing method on the microstructure, defects, hardness, and, especially, the corrosion properties was studied. It was concluded that the laser remelting strategy causes an increment of the α and β phases from the dissolution of metastable α’. This technique also provokes a decrease in the number of defects and a reduction of the hardness, which are also reduced with lower scanning speeds. On the other hand, all the corrosion tests show that a low scanning speed and the laser remelting strategy improve the corrosion resistance of the Ti6Al4V alloy since parameters like the Open Circuit Potential (OCP) and the Polarization Resistance (Rp) are nobler and the mass gain is lower.
Collapse
|
12
|
Corrosion Behavior of Titanium Dental Implants with Implantoplasty. MATERIALS 2022; 15:ma15041563. [PMID: 35208101 PMCID: PMC8875252 DOI: 10.3390/ma15041563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
The procedure generally used to remove bacterial biofilm adhering to the surface of titanium on dental implants is implantoplasty. This treatment is based on the machining of the titanium surface to remove bacterial plaque. In this study, we used 60 grade 4 titanium implants and performed the implantoplasty protocol. Using X-ray diffraction, we determined the stresses accumulated in each of the as-received, machined and debris implants. The resistance to corrosion in open circuit and potentiodynamically in physiological medium has been determined, and the corrosion potentials and intensities have been determined. Tests have been carried out to determine ion release by ICP-MS at different immersion times. The results show that the corrosion resistance and the release of titanium ions into the medium are related to the accumulated energy or the degree of deformation. The titanium debris exhibit compressive residual stresses of −202 MPa, the implant treated with implantoplasty −120 MPa, and as-received −77 MPa, with their corrosion behavior resulting in corrosion rates of 0.501, 0.77, and 0.444 mm/year, respectively. Debris is the material with the worst corrosion resistance and the one that releases the most titanium ions to the physiological medium (15.3 ppb after 21 days vs. 7 ppb for as-received samples). Pitting has been observed on the surface of the debris released into the physiological environment. This behavior should be taken into account by clinicians for the good long-term behavior of implants with implantoplasty.
Collapse
|
13
|
Effect of the Nature of the Particles Released from Bone Level Dental Implants: Physicochemical and Biological Characterization. COATINGS 2022. [DOI: 10.3390/coatings12020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The placement of bone–level dental implants can lead to the detachment of particles in the surrounding tissues due to friction with the cortical bone. In this study, 60 bone–level dental implants were placed with the same design: 30 made of commercially pure grade 4 titanium and 30 made of Ti6Al4V alloy. These implants were placed in cow ribs following the company’s placement protocols. Particles detached from the dental implants were isolated and their size and specific surface area were characterized. The irregular morphology was observed by scanning electron microscopy. Ion release to the medium was determined at different immersion times in physiological medium. Cytocompatibility studies were performed with fibroblastic and osteoblastic cells. Gene expression and cytokine release were analysed to determine the action of inflammatory cells. Particle sizes of around 15 μM were obtained in both cases. The Ti6Al4V alloy particles showed significant levels of vanadium ion release and the cytocompatibility of these particles is lower than that of commercially pure titanium. Ti6Al4V alloy presents higher levels of inflammation markers (TNFα and Il–1β) compared to that of only titanium. Therefore, there is a trend that with the alloy there is a greater toxicity and a greater pro-inflammatory response.
Collapse
|
14
|
Wu X, Cai C, Gil J, Jantz E, Al Sakka Y, Padial-Molina M, Suárez-López del Amo F. Characteristics of Particles and Debris Released after Implantoplasty: A Comparative Study. MATERIALS 2022; 15:ma15020602. [PMID: 35057319 PMCID: PMC8779414 DOI: 10.3390/ma15020602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
Titanium particles embedded on peri-implant tissues are associated with a variety of detrimental effects. Given that the characteristics of these detached fragments (size, concentration, etc.) dictate the potential cytotoxicity and biological repercussions exerted, it is of paramount importance to investigate the properties of these debris. This study compares the characteristics of particles released among different implant systems (Group A: Straumann, Group B: BioHorizons and Group C: Zimmer) during implantoplasty. A novel experimental system was utilized for measuring and collecting particles generated from implantoplasty. A scanning mobility particle sizer, aerodynamic particle sizer, nano micro-orifice uniform deposit impactor, and scanning electron microscope were used to collect and analyze the particles by size. The chemical composition of the particles was analyzed by highly sensitive microanalysis, microstructures by scanning electron microscope and the mechanical properties by nanoindentation equipment. Particles released by implantoplasty showed bimodal size distributions, with the majority of particles in the ultrafine size range (<100 nm) for all groups. Statistical analysis indicated a significant difference among all implant systems in terms of the particle number size distribution (p < 0.0001), with the highest concentration in Group B and lowest in Group C, in both fine and ultrafine modes. Significant differences among all groups (p < 0.0001) were also observed for the other two metrics, with the highest concentration of particle mass and surface area in Group B and lowest in Group C, in both fine and ultrafine modes. For coarse particles (>1 µm), no significant difference was detected among groups in terms of particle number or mass, but a significantly smaller surface area was found in Group A as compared to Group B (p = 0.02) and Group C (p = 0.005). The 1 first minute of procedures had a higher number concentration compared to the second and third minutes. SEM-EDS analysis showed different morphologies for various implant systems. These results can be explained by the differences in the chemical composition and microstructures of the different dental implants. Group B is softer than Groups A and C due to the laser treatment in the neck producing an increase of the grain size. The hardest implants were those of Group C due to the cold-strained titanium alloy, and consequently they displayed lower release than Groups A and B. Implantoplasty was associated with debris particle release, with the majority of particles at nanometric dimensions. BioHorizons implants released more particles compared to Straumann and Zimmer. Due to the widespread use of implantoplasty, it is of key importance to understand the characteristics of the generated debris. This is the first study to detect, quantify and analyze the debris/particles released from dental implants during implantoplasty including the full range of particle sizes, including both micro- and nano-scales.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Periodontics, College of Dentistry, University of Oklahoma, Oklahoma City, OK 73117, USA; (X.W.); (E.J.)
| | - Changjie Cai
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma, Oklahoma City, OK 73117, USA;
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n. Sant Cugat del Vallés, 08125 Barcelona, Spain
- Facultat de Odontologia, Universitat Internacional de Catalunya, Josep Trueta s/n. San Cugat del Vallés, 08125 Barcelona, Spain
- Correspondence: (J.G.); (F.S.-L.d.A.)
| | - Elizabeth Jantz
- Department of Periodontics, College of Dentistry, University of Oklahoma, Oklahoma City, OK 73117, USA; (X.W.); (E.J.)
| | | | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
| | | |
Collapse
|