1
|
Bryndal I, Stolarczyk M, Mikołajczyk A, Krupińska M, Pyra A, Mączyński M, Matera-Witkiewicz A. Pyrimidine Schiff Bases: Synthesis, Structural Characterization and Recent Studies on Biological Activities. Int J Mol Sci 2024; 25:2076. [PMID: 38396753 PMCID: PMC10889512 DOI: 10.3390/ijms25042076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine has been synthesized, characterized, and evaluated for its antibacterial activity against Enterococcus faecalis in combination with antineoplastic activity against gastric adenocarcinoma. In this study, new 5-iminomethylpyrimidine compounds were synthesized which differ in the substituent(s) of the aromatic ring attached to the imine group. The structures of newly obtained pyrimidine Schiff bases were established by spectroscopy techniques (ESI-MS, FTIR and 1H NMR). To extend the current knowledge about the features responsible for the biological activity of the new 5-iminomethylpyrimidine derivatives, low-temperature single-crystal X-ray analyses were carried out. For all studied crystals, intramolecular N-H∙∙∙N hydrogen bonds and intermolecular C-H∙∙∙F interactions were observed and seemed to play an essential role in the formation of the structures. Simultaneously, their biological properties based on their cytotoxic features were compared with the activities of the Schiff base (III) published previously. Moreover, computational investigations, such as ADME prediction analysis and molecular docking, were also performed on the most active new Schiff base (compound 4b). These results were compared with the highest active compound III.
Collapse
Affiliation(s)
- Iwona Bryndal
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Marcin Stolarczyk
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Aleksandra Mikołajczyk
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| | - Magdalena Krupińska
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| | - Anna Pyra
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie, 50-383 Wrocław, Poland;
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Agnieszka Matera-Witkiewicz
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| |
Collapse
|
2
|
Svarca A, Grava A, Dubnika A, Ramata-Stunda A, Narnickis R, Aunina K, Rieksta E, Boroduskis M, Jurgelane I, Locs J, Loca D. Calcium Phosphate/Hyaluronic Acid Composite Hydrogels for Local Antiosteoporotic Drug Delivery. Front Bioeng Biotechnol 2022; 10:917765. [PMID: 35866026 PMCID: PMC9294454 DOI: 10.3389/fbioe.2022.917765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the bone ability of self-regeneration, large bone defects require surgical intervention. Likewise, when it comes to osteoporotic bone fractures, new approaches should be considered a supportive mechanism for the surgery. In recent years, more and more attention has been attracted to advanced drug delivery systems for local osteoporosis treatment, combining appropriate biomaterials with antiosteoporotic drugs, allowing simultaneously to regenerate the bone and locally treat the osteoporosis. Within the current research, hyaluronic acid/strontium ranelate (HA/SrRan), HA/calcium phosphate nanoparticles (HA/CaP NPs), and HA/CaP NPs/SrRan hydrogels were prepared. The effect of CaP and SrRan presence in the composites on the swelling behavior, gel fraction, molecular structure, microstructure, and SrRan and Sr2+ release, as well as in vitro cell viability was evaluated. Obtained results revealed that the route of CaP nanoparticle incorporation into the HA matrix had a significant effect on the hydrogel gel fraction, rheological properties, swelling behavior, and microstructure. Nevertheless, it had a negligible effect on the release kinetics of SrRan and Sr2+. The highest cell (3T3) viability (>80%) was observed for HA hydrogels, with and without SrRan. Moreover, the positive effect of SrRan on 3T3 cells was also demonstrated, showing a significant increase (up to 50%) in cell viability if the used concentrations of SrRan were in the range of 0.05-0.2 μg/ml.
Collapse
Affiliation(s)
- Alise Svarca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Anna Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Raimonds Narnickis
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Kristine Aunina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Eleonora Rieksta
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Martins Boroduskis
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Inga Jurgelane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|