1
|
Li Y, Feng Q, Wang L, Gao X, Xi Y, Ye L, Ji J, Yang X, Zhai G. Current targeting strategies and advanced nanoplatforms for atherosclerosis therapy. J Drug Target 2024; 32:128-147. [PMID: 38217526 DOI: 10.1080/1061186x.2023.2300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Atherosclerosis is one of the major causes of death worldwide, and it is closely related to many cardiovascular diseases, such as stroke, myocardial infraction and angina. Although traditional surgical and pharmacological interventions can effectively retard or slow down the progression of atherosclerosis, it is very difficult to prevent or even reverse this disease. In recent years, with the rapid development of nanotechnology, various nanoagents have been designed and applied to different diseases including atherosclerosis. The unique atherosclerotic microenvironment with signature biological components allows nanoplatforms to distinguish atherosclerotic lesions from normal tissue and to approach plaques specifically. Based on the process of atherosclerotic plaque formation, this review summarises the nanodrug delivery strategies for atherosclerotic therapy, trying to provide help for researchers to understand the existing atherosclerosis management approaches as well as challenges and to reasonably design anti-atherosclerotic nanoplatforms.
Collapse
Affiliation(s)
- Yingchao Li
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Qixiang Feng
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Luyue Wang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xi Gao
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Yanwei Xi
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Lei Ye
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoye Yang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
Zhou Z, Liu Y, Xie P, Yin Z. A ROS-responsive multifunctional targeted prodrug micelle for atherosclerosis treatment. Int J Pharm 2024; 660:124352. [PMID: 38901540 DOI: 10.1016/j.ijpharm.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is a chronic multifactorial cardiovascular disease. To combat atherosclerosis effectively, it is necessary to develop precision and targeted therapy in the early stages of plaque formation. In this study, a simvastatin (SV)-containing prodrug micelle SPCPV was developed by incorporating a peroxalate ester bond (PO). SPCPV could specifically target VCAM-1 overexpressed at atherosclerotic lesions. SPCPV contains a carrier (CP) composed of cyclodextrin (CD) and polyethylene glycol (PEG). At the lesions, CP and SV exerted multifaceted anti-atherosclerotic effects. In vitro studies demonstrated that intracellular reactive oxygen species (ROS) could induce the release of SV from SPCPV. The uptake of SPCPV was higher in inflammatory cells than in normal cells. Furthermore, in vitro experiments showed that SPCPV effectively reduced ROS levels, possessed anti-inflammatory properties, inhibited foam cell formation, and promoted cholesterol efflux. In vivo studies using atherosclerotic rats showed that SPCPV reduced the thickness of the vascular wall and low-density lipoprotein (LDL). This study developed a drug delivery strategy that could target atherosclerotic plaques and treat atherosclerosis by integrating the carrier with SV. The findings demonstrated that SPCPV possessed high stability and safety and had great therapeutic potential for treating early-stage atherosclerosis.
Collapse
Affiliation(s)
- Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Wu C, Mao J, Wang X, Yang R, Wang C, Li C, Zhou X. Advances in treatment strategies based on scavenging reactive oxygen species of nanoparticles for atherosclerosis. J Nanobiotechnology 2023; 21:271. [PMID: 37592345 PMCID: PMC10433664 DOI: 10.1186/s12951-023-02058-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The development of atherosclerosis (AS) is closely linked to changes in the plaque microenvironment, which consists primarily of the cells that form plaque and the associated factors they secrete. The onset of inflammation, lipid deposition, and various pathological changes in cellular metabolism that accompany the plaque microenvironment will promote the development of AS. Numerous studies have shown that oxidative stress is an important condition that promotes AS. The accumulation of reactive oxygen species (ROS) is oxidative stress's most important pathological change. In turn, the effects of ROS on the plaque microenvironment are complex and varied, and these effects are ultimately reflected in the promotion or inhibition of AS. This article reviews the effects of ROS on the microenvironment of atherosclerotic plaques and their impact on disease progression over the past five years and focuses on the progress of treatment strategies based on scavenging ROS of nanoparticles for AS. Finally, we also discuss the prospects and challenges of AS treatment.
Collapse
Affiliation(s)
- Chengxi Wu
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Jingying Mao
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, people's Hospital of Deyang, Deyang, Sichuan, 618000, China
| | - Ronghao Yang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China.
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
4
|
Hu X, Zhao P, Zhang J, Zhu Y, Zhou W, Hong K, Sun R, Wang Y, Lu Y, Liu Y. Ultrasound-assisted biomimetic nanobubbles for targeted treatment of atherosclerosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102682. [PMID: 37105342 DOI: 10.1016/j.nano.2023.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Cardiovascular disease caused by atherosclerosis remains the main reason of death in the worldwide scale. Although oxidative stress plays a key role in the initiation and progression of atherosclerosis, current antioxidant drugs have limited efficacy. To resolve this problem, we constructed Nox2 siRNA-loaded nanobubbles (PNBs-siNox2) coated with platelet membranes to utilize their antioxidant stress activity and targeting effect for atherosclerosis treatment. After platelet membranes modification, the capacity of PNB to target collagen, foam cells, or human umbilical vein endothelial cells (HUVECs) was significantly increased. Moreover, our study demonstrated that under ultrasonic irradiation, biomimetic nanobubbles were more effective at targeting atherosclerotic plaques and delivering genes into cells. In the present study, we provided a biomimetic gene loading strategy based on nanoplatform for noninvasive, precise and efficient therapy of atherosclerosis, which further improved the efficiency of gene transfection and effectively slowed the progression of atherosclerotic plaques when combined with ultrasound.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Jun Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Ying Zhu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Wei Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Ruiying Sun
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Yuxue Wang
- Department of Ultrasound, The Affifiliated Hospital of Yunnan University, Kunming 650021, China
| | - Yongping Lu
- Department of Ultrasound, The Affifiliated Hospital of Yunnan University, Kunming 650021, China.
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China.
| |
Collapse
|
5
|
Yin D, Li M, Xiang P. Mapping research performance and hotspots on nanoparticles in cardiovascular diseases. Medicine (Baltimore) 2023; 102:e33520. [PMID: 37058013 PMCID: PMC10101270 DOI: 10.1097/md.0000000000033520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
Nanoparticles have broad prospects and profound academic significance in cardiovascular diseases. This study aimed to comprehensively summarize the global scientific achievements of nanoparticles in cardiovascular diseases research. Articles on the application of nanoparticles in cardiovascular diseases published from 2002 to 2021 were retrieved from the science citation index expanded of the Web of Science Core Collection, and knowledge maps were generated by Cite Space, VOS viewer, and Hist Cite for further bibliometric analysis. A total of 4321 records were retrieved, and only reviews and articles were retained with a total of 4258 studies. The number of publications on nanoparticles in the cardiovascular field has steadily increased from 2002 to 2021. China and the US contribute the most to this field, producing nearly all the most influential authors and institutions in the top 10 list. The Chinese Academy of Medical Sciences and Harvard University have obtained many high-quality research results. Targeted drug delivery via nanoparticles, myocardial infarction and atherosclerosis are research hotspots. This is the first time to analyze the application of nanoparticles in the cardiovascular field by using multiple bibliometric software. This study provides evidence for researchers to understand the hotspots and directions in this area.
Collapse
Affiliation(s)
- Dan Yin
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mi Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ping Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
6
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
7
|
Tsai CL, Huang CY, Lu YC, Pai LM, Horák D, Ma YH. Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells. Int J Nanomedicine 2022; 17:969-981. [PMID: 35280334 PMCID: PMC8909538 DOI: 10.2147/ijn.s337942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chia-Liang Tsai
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Ching-Yun Huang
- Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Yi-Ching Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Li-Mei Pai
- Department of Biochemistry & Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, Republic of China
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 6, 162 06, Czech Republic
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, Republic of China
- Correspondence: Yunn-Hwa Ma, Department of Physiology and Pharmacology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan, Republic of China, Email
| |
Collapse
|