1
|
Biswas S, Havlicek L, Nemec I, Salitros I, Mandal L, Neugebauer P, Kuppusamy SK, Ruben M. Levamisole Based Co(II) Single-Ion Magnet. Chem Asian J 2024; 19:e202400574. [PMID: 38870468 DOI: 10.1002/asia.202400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
A new Co(II) complex, [Co(NCS)2(L)2] (1) has been synthesized based on levamisole (L) as a new ligand. Single-crystal X-ray diffraction analyses confirm that the Co(II) ion is having a distorted tetrahedral coordination geometry in the complex. Notably strong intramolecular S⋅⋅⋅S and S⋅⋅⋅N interactions has been confirmed by employing Quantum Theory of Atoms in Molecules (QTAIM). These intramolecular interactions occur among the sulfur and nitrogen atoms of the levamisole ligands and also the nitrogen atoms of the thiocyanate. Direct current (dc) magnetic analyses reveal presence of zero field splitting (ZFS) and large magnetic anisotropy on Co(II). Detailed ab initio ligand field theory calculations quantitatively predicted the magnitude of ZFS. Prominent field-induced single-ion magnet (SIM) behavior was observed for 1 from dynamic magnetization measurements. Slow magnetic relaxation follows an Orbach mechanism with the effective energy barrier Ueff=29.6 (7) K and relaxation time τo=1.4 (4)×10-9 s.
Collapse
Affiliation(s)
- Soumava Biswas
- Dr. Vishwanath Karad MIT World Peace University Survey No, 124, Paud Rd, Kothrud, Pune, 411038, Maharashtra, India
| | - Lubomir Havlicek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Zizkova 22, 61662, Brno, Czech Republic
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77147, Olomouc, Czech Republic
| | - Ivan Salitros
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava., Bratislava, SK-81237, Slovakia
| | - Leena Mandal
- Department of Chemistry, Polba Mahavidyalaya, Polba Hooghly, PIN-712148, West Bengal, India
| | - Petr Neugebauer
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int J Mol Sci 2022; 24:ijms24010215. [PMID: 36613658 PMCID: PMC9820815 DOI: 10.3390/ijms24010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2- anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by μ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (β-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and β-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom ("octahedral CoN2O4 around the metal center at room temperature" → "pseudo-tetrahedral CoN2O2 at 150 K"). The SPT was confirmed by DSC in the temperature range 210-150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,β,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2-150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.
Collapse
|
3
|
Parreiras J, Faria EN, Oliveira WXC, Pinheiro CB, do Pim WD, da Silva Júnior EN, Pedroso EF, Julve M, Pereira CLM. X-ray structure and magnetic properties of a mononuclear complex and a 1D coordination polymer assembled by cobalt(II) ions and a flexible oxamate ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2135436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Parreiras
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erica N. Faria
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Willian X. C. Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos B. Pinheiro
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walace D. do Pim
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eufrânio N. da Silva Júnior
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Emerson F. Pedroso
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Miguel Julve
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Universitat de València, Paterna, València, Spain
| | - Cynthia L. M. Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Field-Induced Slow Magnetic Relaxation in Co II Cyclopropane-1,1-dicarboxylates. Molecules 2022; 27:molecules27196537. [PMID: 36235074 PMCID: PMC9572064 DOI: 10.3390/molecules27196537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
New CoII substituted malonate field-induced molecular magnets {[Rb6Co3(cpdc)6(H2O)12]∙6H2O}n (1) and [Cs2Co(cpdc)2(H2O)6]n (2) (where cpdc2− stands for cyclopropane-1,1-dicarboxylic acid dianions) were synthesized. Both compounds contain mononuclear bischelate fragments {CoII(cpdc)2(H2O)2}2− where the quasi-octahedral cobalt environment (CoO6) is complemented by water molecules in apical positions. The alkali metal atoms play the role of connectors between the bischelate fragments to form 3D and 2D polymeric structures for 1 and 2, respectively. Analysis of dc magnetic data using the parametric Griffith Hamiltonian for high-spin CoII supported by ab initio calculations revealed that both compounds have an easy axis of magnetic anisotropy. Compounds 1 and 2 exhibit slow magnetic relaxation under an external magnetic field (HDC = 1000 and 1500 Oe, respectively).
Collapse
|
5
|
The Role of the Bridge in Single-Ion Magnet Behaviour: Reinvestigation of Cobalt(II) Succinate and Fumarate Coordination Polymers with Nicotinamide. INORGANICS 2022. [DOI: 10.3390/inorganics10090128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two previously synthesized cobalt(II) coordination polymers; {[Co(μ2-suc)(nia)2(H2O)2]·2H2O}n (suc = succinate(2−), nia = nicotinamide) and [Co(μ2-fum)(nia)2(H2O)2]n (fum = fumarate(2−)) were prepared and thoroughly characterized. Both complexes form 1D coordination chains by bonding of Co(nia)2(H2O)2 units through succinate or fumarate ligands while these chains are further linked through hydrogen bonds to 3D supramolecular networks. The intermolecular interactions of both complexes are quantified using Hirshfeld surface analysis and their infrared spectra, electronic spectra and static magnetic properties are confronted with DFT and state-of-the-art ab-initio calculations. Dynamic magnetic measurements show that both complexes exhibit single-ion magnet behaviour induced by a magnetic field. Since they possess very similar chemical structure, differing only in the rigidity of the bridge between the magnetic centres, this chemical feature is put into context with changes in their magnetic relaxation.
Collapse
|
6
|
Huang YL, Zhong YJ, Ye HJ, Li YH, Kuang XM, Ouyang ZJ, Chen WB, Yang M, Dong W. Slow magnetic relaxation and spin crossover behavior in two mixed-valence Co( ii)/Co( iii) complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mixed-valence Co(ii)/Co(iii) complexes of [CoII(phen)3][CoIII(HATD)2]2·3DMA·3.5H2O (1) with field induced single-molecule magnet behavior, and [CoII(terpy)2][CoIII(HATD)2]2·4DMA·H2O (2) with a gradual thermal spin crossover (SCO).
Collapse
Affiliation(s)
- You-Lin Huang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yun-Jing Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Hua-Jian Ye
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - You-Hong Li
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiao-Man Kuang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhi-Jian Ouyang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|