1
|
Nirmal KA, Dongale TD, Khot AC, Yao C, Kim N, Kim TG. Ultra-Transparent and Multifunctional IZVO Mesh Electrodes for Next-Generation Flexible Optoelectronics. NANO-MICRO LETTERS 2024; 17:12. [PMID: 39325072 PMCID: PMC11427630 DOI: 10.1007/s40820-024-01525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility. In this paper, we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using self-cracking-assisted templates. Using this method, we produced an electrode with ultra-transparency (97.39%), high conductance (Rs = 21.24 Ω sq-1), elevated work function (5.16 eV), and good mechanical stability. We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics, organic light-emitting diodes, and flexible transparent memristor devices for neuromorphic computing, resulting in exceptional device performance. In addition, the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility, rendering them a promising option for application in flexible optoelectronics.
Collapse
Affiliation(s)
- Kiran A Nirmal
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, Republic of Korea
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Atul C Khot
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, Republic of Korea
| | - Chenjie Yao
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, Republic of Korea
| | - Nahyun Kim
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, Republic of Korea
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zarei M, Li M, Medvedeva EE, Sharma S, Kim J, Shao Z, Walker SB, LeMieux M, Liu Q, Leu PW. Flexible Embedded Metal Meshes by Sputter-Free Crack Lithography for Transparent Electrodes and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6382-6393. [PMID: 38279914 PMCID: PMC10859897 DOI: 10.1021/acsami.3c16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
A facile and novel fabrication method is demonstrated for creating flexible poly(ethylene terephthalate) (PET)-embedded silver meshes using crack lithography, reactive ion etching (RIE), and reactive silver ink. The crack width and spacing in a waterborne acrylic emulsion polymer are controlled by the thickness of the polymer and the applied stress due to heating and evaporation. Our innovative fabrication technique eliminates the need for sputtering and ensures stronger adhesion of the metal meshes to the PET substrate. Crack trench depths over 5 μm and line widths under 5 μm have been achieved. As a transparent electrode, our flexible embedded Ag meshes exhibit a visible transmission of 91.3% and sheet resistance of 0.54 Ω/sq as well as 93.7% and 1.4 Ω/sq. This performance corresponds to figures of merit (σDC/σOP) of 7500 and 4070, respectively. For transparent electromagnetic interference (EMI) shielding, the metal meshes achieve a shielding efficiency (SE) of 42 dB with 91.3% visible transmission and an EMI SE of 37.4 dB with 93.7% visible transmission. We demonstrate the highest transparent electrode performance of crack lithography approaches in the literature and the highest flexible transparent EMI shielding performance of all fabrication approaches in the literature. These metal meshes may have applications in transparent electrodes, EMI shielding, solar cells, and organic light-emitting diodes.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mingxuan Li
- Department
of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Elizabeth E. Medvedeva
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sooraj Sharma
- Department
of Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jungtaek Kim
- Department
of Industrial Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zefan Shao
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - S. Brett Walker
- Electroninks
Incorporated, Austin, Texas 78744, United States
| | - Melbs LeMieux
- Electroninks
Incorporated, Austin, Texas 78744, United States
| | - Qihan Liu
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paul W. Leu
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Industrial Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
3
|
Chung SI, Kang TW, Kim PK, Ha TG, Hong YP. Highly Transparent Ka-/W-Band Electromagnetic Shielding Films Based on Double-Layered Metal Meshes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56612-56622. [PMID: 37988133 DOI: 10.1021/acsami.3c14788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
An electromagnetic (EM) wave-shielding film exhibiting high performance in high-frequency bands, such as the Ka- and W-bands, was fabricated by using double-layered metal meshes. The double-layered shielding (DLS) film consists of metallic micromesh and nanomesh electrodes (NMEs) on the upper and lower surfaces of a poly(ethylene terephthalate) (PET) film, respectively. The micromesh electrodes (MMEs) were fabricated such that they possessed a thickness higher than the line width, and they thus exhibited excellent electromagnetic wave-shielding performance in addition to optical transmittance. Moreover, the nanomesh electrodes helped prevent the deterioration of the shielding performance owing to the increase in frequency, which was possible by decreasing the aperture size of the mesh-type electrodes. The shielding effectiveness (SE) of the double-layered metal-mesh film was evaluated by using a shielding measurement system that is optimized for high frequencies. In addition, optical transmittance and flexibility tests were conducted. The results confirm that the double-layered shielding film exhibited a shielding effectiveness of more than 50 dB at an optical transmittance of 90% and a stable bending resistance of up to 5000 cycles at a radius of curvature of 6 mm. Double-layered metal-mesh films with such excellent performance are expected to be widely used in diverse applications such as the automobile, medical, and military industries.
Collapse
Affiliation(s)
- Sung-Il Chung
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Tae-Weon Kang
- Electromagnetic Wave Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Pan Kyeom Kim
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Tae-Gyu Ha
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Young-Pyo Hong
- Electromagnetic Wave Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Tarasevich YY, Eserkepov AV, Vodolazskaya IV. Electrical conductivity of crack-template-based transparent conductive films: A computational point of view. Phys Rev E 2023; 108:044143. [PMID: 37978687 DOI: 10.1103/physreve.108.044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Crack-template-based transparent conductive films (TCFs) are promising kinds of junction-free, metallic network electrodes that can be used, e.g., for transparent electromagnetic interference shielding. Using image processing of published photos of TCFs, we have analyzed the topological and geometrical properties of such crack templates. Additionally, we analyzed the topological and geometrical properties of some computer-generated networks. We computed the electrical conductance of such networks against the number density of their cracks. Comparison of these computations with predictions of the two analytical approaches revealed the proportionality of the electrical conductance to the square root of the number density of the cracks was found, this being consistent with the theoretical predictions.
Collapse
Affiliation(s)
- Yuri Yu Tarasevich
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| | - Andrei V Eserkepov
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| | - Irina V Vodolazskaya
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| |
Collapse
|
5
|
Jeon YJ, Yun JH, Kang MS. Analysis of Electromagnetic Shielding Properties of a Material Developed Based on Silver-Coated Copper Core-Shell Spraying. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15155448. [PMID: 35955382 PMCID: PMC9369823 DOI: 10.3390/ma15155448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 05/03/2023]
Abstract
This study proposes an electromagnetic shielding material sprayed with silver-coated copper powder (core-shell powder). The shielding properties of the material are analyzed in details section. Cross-sectional observation and sheet resistance measurement were used to determine the thickness and electrical conductivity of the electromagnetic shielding layer, which was generated by spray-coating; this aided in confirming the uniformity of the coating film. The results indicate that the electromagnetic interference shielding effectiveness increases when the silver-coated copper paste (core-shell paste) is used as the coating material rather than the conventional aluminum base. The proposed material can be used in various frequency ranges owing to the excellent shielding effectiveness of the core-shell paste used in this study. Further investigations on the optimized spray-coating type of electromagnetic shielding material are required based on the composition of the core-shell paste and the thickness of the coating film.
Collapse
Affiliation(s)
- Yu-Jae Jeon
- Department of Medical Rehabilitation Science, Yeoju Institute of Technology, Yeoju 12652, Korea
| | - Jong-Hwan Yun
- Regional Innovation Platform Project, Kongju National University, Cheonan 31080, Korea
| | - Min-Soo Kang
- Division of Smart Automotive Engineering, Sun Moon University, Asan 31460, Korea
- Correspondence:
| |
Collapse
|
6
|
Increasing the Efficiency of Foundry Production by Changing the Technology of Pretreatment with Quartzite. METALS 2022. [DOI: 10.3390/met12081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficiency of the production of foundry products depends on the reliable operation of the melting furnace including, therefore, the durability of its lining. The most common material adopted for the production of an acid furnace crucible lining is quartzite, in which during the pretreatment (heating to 800 °C followed by holding), a tridymite phase appears that maintains a constant volume at 840–1470 °C for a long time and provides high lining durability of 300–350 melts, but only when using melting temperature regimes not exceeding 1500 °C. However, the absence of iron scrap leads to the smelting of synthetic iron from only one steel scrap using higher melting temperatures (1550–1570 °C), which sharply reduces the lifetime of the lining to 220 melts. This work is devoted to research aimed at establishing technology for the pretreatment with the original quartzite, which ensures the formation of a phase state that successfully withstands elevated temperatures for a long time. The studies were carried out using a Bruker D8 ADVANCE diffractometer and a Shimadzu XRF-1800 X-ray wave-dispersive spectrometer. The work consisted of drying samples of the original quartzite at temperatures of 200 and 800 °C with subsequent exposure to temperatures of 200, 400, 600, 870, 1000, 1200, 1470 and 1550 °C. As a result, the conditions for pretreatment of quartzite were established, during which during its further use, a cristobalite phase can be obtained, which makes it possible manufacture a high-temperature lining that ensures its high durability. The introduction of this technology will ensure the efficiency of the production of foundry products for enterprises operating induction crucible furnaces at industrial frequency.
Collapse
|