1
|
Sharma K, Singh H, Singh G, Kaur N, Kumar Pati P, Singh K, Kumar A, Kang TS. Sustainable preparation of AuAg alloy@AgBr Janus nanoparticles via dissipative self-assembly for photocatalysis. NANOSCALE 2024; 16:17549-17558. [PMID: 39225591 DOI: 10.1039/d4nr02637c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report a facile synthesis of cetyltrimethylammonium bromide (CTAB) templated AuAg alloy@AgBr Janus-nanoparticles (JNPs) using a non-conventional top-down approach with precise control over symmetry breaking. The addition of AgNO3 to a micellar solution of CTAB results in micelle-stabilized AgBr colloids having excess Ag+ at the interstitial sites of AgBr. AgBr colloids undergo weak self-assembly supported by inter-micellar interactions. The interfacial disturbance of self-assembled colloids via electrostatic adsorption of AuCl4- or Au(OH)4- at the micelle-AgBr interface downsizes the colloids. This is followed by the growth of the AuAg phase onto AgBr resulting in AuAg alloy@AgBr JNPs via different reduction pathways (photoreduction or chemical reduction) in the presence of ascorbic acid. The prepared JNPs act as efficient visible light photocatalysts for the degradation of aqueous rhodamine B. Interestingly, the trapping of holes favors the photocatalytic efficiency. Furthermore, the JNPs have shown proficiency in inhibiting the growth of both Gram-positive and Gram-negative bacteria as compared to the commercial antibiotic kanamycin, with a very low MIC value of ∼35 μg ml-1. In this way, a new single-pot strategy for the controlled preparation of photo-catalytically active and antimicrobial AuAg alloy@AgBr JNPs governed by dissipative self-assembly is reported for the first time.
Collapse
Affiliation(s)
- Kanica Sharma
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Harjinder Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Gurbir Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kuldeep Singh
- Academy of Scientific and Industrial Research (ACSIR), Ghaziabad, 201002, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Arvind Kumar
- Academy of Scientific and Industrial Research (ACSIR), Ghaziabad, 201002, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Tejwant Singh Kang
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
2
|
Man JN, Zhu J, Weng GJ, Li JJ, Zhao JW. Using gold-based nanomaterials for fighting pathogenic bacteria: from detection to therapy. Mikrochim Acta 2024; 191:627. [PMID: 39325115 DOI: 10.1007/s00604-024-06713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Owing to the unique quantum size effect and surface effect, gold-based nanomaterials (GNMs) are promising for pathogen detection and broad-spectrum antimicrobial activity. This review summarizes recent research on GNMs as sensors for detecting pathogens and as tools for their elimination. Firstly, the need for pathogen detection is briefly introduced with an overview of the physicochemical properties of gold nanomaterials. And then strategies for the application of GNMs in pathogen detection are discussed. Colorimetric, fluorescence, surface-enhanced Raman scattering (SERS) techniques, dark-field microscopy detection and electrochemical methods can enable efficient, sensitive, and specific pathogen detection. The third section describes the antimicrobial applications of GNMs. They can be used for antimicrobial agent delivery and photothermal conversion and can act synergistically with photosensitizers to achieve the precise killing of pathogens. In addition, GNMs are promising for integrated pathogen detection and treatment; for example, combinations of colorimetric or SERS detection with photothermal sterilization have been demonstrated. Finally, future outlooks for the applications of GNMs in pathogen detection and treatment are summarized.
Collapse
Affiliation(s)
- Jia-Ni Man
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Aguilar-Garay R, Lara-Ortiz LF, Campos-López M, Gonzalez-Rodriguez DE, Gamboa-Lugo MM, Mendoza-Pérez JA, Anzueto-Ríos Á, Nicolás-Álvarez DE. A Comprehensive Review of Silver and Gold Nanoparticles as Effective Antibacterial Agents. Pharmaceuticals (Basel) 2024; 17:1134. [PMID: 39338299 PMCID: PMC11434858 DOI: 10.3390/ph17091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing threat from antibiotic-resistant bacteria has necessitated the development of novel methods to counter bacterial infections. In this context, the application of metallic nanoparticles (NPs), especially gold (Au) and silver (Ag), has emerged as a promising strategy due to their remarkable antibacterial properties. This review examines research published between 2006 and 2023, focusing on leading journals in nanotechnology, materials science, and biomedical research. The primary applications explored are the efficacy of Ag and Au NPs as antibacterial agents, their synthesis methods, morphological properties, and mechanisms of action. An extensive review of the literature on NPs synthesis, morphology, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and effectiveness against various Gram(+/-) bacteria confirms the antibacterial efficacy of Au and Ag NPs. The synthesis methods and characteristics of NPs, such as size, shape, and surface charge, are crucial in determining their antibacterial activity, as these factors influence their interactions with bacterial cells. Furthermore, this review underscores the urgent necessity of standardizing synthesis techniques, MICs, and reporting protocols to enhance the comparability and reproducibility of future studies. Standardization is essential for ensuring the reliability of research findings and accelerating the clinical application of NP-based antimicrobial approaches. This review aims to propel NP-based antimicrobial strategies by elucidating the properties that enhance the antibacterial activity of Ag and Au NPs. By highlighting their inhibitory effects against various bacterial strains and relatively low cytotoxicity, this work positions Ag and Au NPs as promising materials for developing antibacterial agents, making a significant contribution to global efforts to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Ricardo Aguilar-Garay
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Luis F. Lara-Ortiz
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Maximiliano Campos-López
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Dafne E. Gonzalez-Rodriguez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Margoth M. Gamboa-Lugo
- Faculty of Chemical and Biological Sciences, Universidad Autónoma de Sinaloa, Culiacan 80013, Mexico;
| | - Jorge A. Mendoza-Pérez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Álvaro Anzueto-Ríos
- Bionic Academy, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Dulce E. Nicolás-Álvarez
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| |
Collapse
|
4
|
Bindu A, Bhadra S, Nayak S, Khan R, Prabhu AA, Sevda S. Bioelectrochemical biosensors for water quality assessment and wastewater monitoring. Open Life Sci 2024; 19:20220933. [PMID: 39220594 PMCID: PMC11365470 DOI: 10.1515/biol-2022-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Anagha Bindu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Soubhagya Nayak
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Rizwan Khan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Ashish A. Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| |
Collapse
|
5
|
Khan S, Rauf A, Aljohani ASM, Al-Awthan YS, Ahmad Z, Bahattab OS, Khan S, Saadiq M, Khan SA, Thiruvengadam R, Thiruvengadam M. Green synthesis of silver and gold nanoparticles in Callistemon viminalis extracts and their antimicrobial activities. Bioprocess Biosyst Eng 2024; 47:1197-1211. [PMID: 38512495 DOI: 10.1007/s00449-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Omar S Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Shehla Khan
- Department, of Biotechnology, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Muhammad Saadiq
- Department of Chemistry, Bacha Khan University, Charsadda, KP, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
6
|
Celesti C, Giofrè SV, Espro C, Legnani L, Neri G, Iannazzo D. Modified Gold Screen-Printed Electrodes for the Determination of Heavy Metals. SENSORS (BASEL, SWITZERLAND) 2024; 24:4935. [PMID: 39123983 PMCID: PMC11314839 DOI: 10.3390/s24154935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Screen-printed electrodes (SPEs) are reliable, portable, affordable, and versatile electrochemical platforms for the real-time analytical monitoring of emerging analytes in the environmental, clinical, and agricultural fields. The aim of this study was to evaluate the electrochemical behavior of gold screen-printed electrodes (SPGEs) modified with molecules containing amino (Tr-N) or α-aminophosphonate (Tr-P) groups for the selective and sensitive detection of the toxic metal ions Pb2+ and Hg2+ in aqueous samples. After optimizing the analytical parameters (conditioning potential and time, deposition potential and time, pH and concentration of the supporting electrolyte), anodic square wave stripping voltammetry (SWASV) was used to evaluate and compare the electrochemical performance of bare or modified electrodes for the detection of Hg2+ and Pb2+, either alone or in their mixtures in the concentration range between 1 nM and 10 nM. A significative improvement in the detection ability of Pb2+ ions was recorded for the amino-functionalized gold sensor SPGE-N, while the presence of a phosphonate moiety in SPGE-P led to greater sensitivity towards Hg2+ ions. The developed sensors allow the detection of Pb2+ and Hg2+ with a limit of detection (LOD) of 0.41 nM and 35 pM, respectively, below the legal limits for these heavy metal ions in drinking water or food, while the sensitivity was 5.84 µA nM-1cm-2 and 10 µA nM-1cm-2, respectively, for Pb2+ and Hg2+. The reported results are promising for the development of advanced devices for the in situ and cost-effective monitoring of heavy metals, even in trace amounts, in water resources.
Collapse
Affiliation(s)
- Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Giovanni Neri
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| |
Collapse
|
7
|
Mechouche MS, Merouane F, Addad A, Karmazin L, Boukherroub R, Lakhdari N. Enhanced biosynthesis of coated silver nanoparticles using isolated bacteria from heavy metal soils and their photothermal-based antibacterial activity: integrating Response Surface Methodology (RSM) Hybrid Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies. World J Microbiol Biotechnol 2024; 40:252. [PMID: 38913279 DOI: 10.1007/s11274-024-04048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
This study explores the biosynthesis of silver nanoparticles (AgNPs) using the Streptomyces tuirus S16 strain, presenting an eco-friendly alternative to mitigate the environmental and health risks of chemical synthesis methods. It focuses on optimizing medium culture conditions, understanding their physicochemical properties, and investigating their potential photothermal-based antibacterial application. The S16 strain was selected from soils contaminated with heavy metals to exploit its ability to produce diverse bioactive compounds. By employing the combination of Response Surface Methodology (RSM) and Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies, we optimized AgNPs synthesis, achieving an improvement of nearly 2.45 times the initial yield under specific conditions (Bennet's medium supplemented with glycerol [5 g/L] and casamino-acid [3 g/L] at 30 °C for 72 h). A detailed physicochemical characterization was conducted. Notably, the AgNPs were well dispersed, and a carbonaceous coating layer on their surface was confirmed using energy-dispersive X-ray spectroscopy. Furthermore, functional groups were identified using Fourier-transform infrared spectroscopy, which helped enhance the AgNPs' stability and biocompatibility. AgNPs also demonstrated efficient photothermal conversion under light irradiation (0.2 W/cm2), with temperatures increasing to 41.7 °C, after 30 min. In addition, treatment with light irradiation of E. coli K-12 model effectively reduced the concentration of AgNPs from 105 to 52.5 µg/mL, thereby enhancing the efficacy of silver nanoparticles in contact with the E. coli K-12.
Collapse
Affiliation(s)
- Meroua Safa Mechouche
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria.
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, IEMN - UMR 8520, 59000, Lille, France.
| | - Fateh Merouane
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria
| | - Ahmed Addad
- UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS - UMR 8207, 59000, Lille, France
| | - Lydia Karmazin
- Institut Chevreul FR2638, Pôle Diffraction Et Diffusion Des Rayons X, Cité Scientifique-Université de Lille, Avenue Paul Langevin, CEDEX, 59652, Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, IEMN - UMR 8520, 59000, Lille, France
| | - Nadjem Lakhdari
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria
| |
Collapse
|
8
|
Rabiee N, Ahmadi S, Akhavan O, Luque R. Correction: Rabiee et al. Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Materials 2022, 15, 1799. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2841. [PMID: 38930414 PMCID: PMC11204962 DOI: 10.3390/ma17122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Following publication [...].
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran;
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran;
| | - Rafael Luque
- Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| |
Collapse
|
9
|
Dayma P, Choudhary N, Ali D, Alarifi S, Dudhagara P, Luhana K, Yadav VK, Patel A, Patel R. Exploring the Potential of Halotolerant Actinomycetes from Rann of Kutch, India: A Study on the Synthesis, Characterization, and Biomedical Applications of Silver Nanoparticles. Pharmaceuticals (Basel) 2024; 17:743. [PMID: 38931410 PMCID: PMC11206697 DOI: 10.3390/ph17060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
A tremendous increase in the green synthesis of metallic nanoparticles has been noticed in the last decades, which is due to their unique properties at the nano dimension. The present research work deals with synthesis mediated by the actinomycete Streptomyces tendae of silver nanoparticles (AgNPs), isolated from Little and Greater Rann of Kutch, India. The confirmation of the formation of AgNPs by the actinomycetes was carried out by using a UV-Vis spectrophotometer where an absorbance peak was obtained at 420 nm. The X-ray diffraction pattern demonstrated five characteristic diffraction peaks indexed at the lattice plane (111), (200), (231), (222), and (220). Fourier transform infrared showed typical bands at 531 to 1635, 2111, and 3328 cm-1. Scanning electron microscopy shows that the spherical-shaped AgNPs particles have diameters in the range of 40 to 90 nm. The particle size analysis displayed the mean particle size of AgNPs in aqueous medium, which was about 55 nm (±27 nm), bearing a negative charge on their surfaces. The potential of the S. tendae-mediated synthesized AgNPs was evaluated for their antimicrobial, anti-methicillin-resistant Staphylococcus aureus (MRSA), anti-biofilm, and anti-oxidant activity. The maximum inhibitory effect was observed against Pseudomonas aeruginosa at (8 µg/mL), followed by Escherichia coli and Aspergillus niger at (32 µg/mL), and against Candida albicans (64 µg/mL), whereas Bacillus subtilis (128 µg/mL) and Staphylococcus aureus (256 µg/mL) were much less sensitive to AgNPs. The biosynthesized AgNPs displayed activity against MRSA, and the free radical scavenging activity was observed with an increase in the dosage of AgNPs from 25 to 200 µg/mL. AgNPs in combination with ampicillin displayed inhibition of the development of biofilm in Pseudomonas aeruginosa and Streptococcus pneumoniae at 98% and 83%, respectively. AgNPs were also successfully coated on the surface of cotton to prepare antimicrobial surgical cotton, which demonstrated inhibitory action against Bacillus subtilis (15 mm) and Escherichia coli (12 mm). The present research integrates microbiology, nanotechnology, and biomedical science to formulate environmentally friendly antimicrobial materials using halotolerant actinomycetes, evolving green nanotechnology in the biomedical field. Moreover, this study broadens the understanding of halotolerant actinomycetes and their potential and opens possibilities for formulating new antimicrobial products and therapies.
Collapse
Affiliation(s)
- Paras Dayma
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; (P.D.); (P.D.)
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Pravin Dudhagara
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; (P.D.); (P.D.)
| | - Kuldeep Luhana
- Department of Biotechnology, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Virendra Kumar Yadav
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashish Patel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; (P.D.); (P.D.)
| |
Collapse
|
10
|
Lasak M, Nirwan VP, Kuc-Ciepluch D, Lysek-Gladysinska M, Javier de la Mata F, Gomez R, Fahmi A, Ciepluch K. Dendronized Ag/Au Nanomats: Antimicrobial Scaffold for Wound Healing Bandages. Macromol Biosci 2024; 24:e2300513. [PMID: 38444226 DOI: 10.1002/mabi.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Electrospun polymer nanofibers, due to high surface area-to-volume ratio, high porosity, good mechanical strength, and ease of functionalization, appear as promising multifunctional materials for biomedical applications. Thanks to their unidirectional structure, imitating the extracellular matrix (ECM), they can be used as scaffolds for cell adhesion and proliferation. In addition, the incorporation of active groups inside nanofiber can give properties for bactericides. The proposed nanomats incorporate nanoparticles templated within the electrospun nanofibers that prevent infections and stimulate tissue regeneration. The generated hybrid electrospun nanofibers are composed of a copolymer of L-lactide-block-ε-caprolactone (PL-b-CL), 70:30, blended with homopolymer polyvinylpyrrolidone (PVP) and gold (Au) nanoparticles. A low cytotoxicity and slightly increased immunoreactivity, stimulated by the nanomat, are observed. Moreover, the decoration of the hybrid nanomat with dendronized silver nanoparticles (Dend-Ag) improves their antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa. The use of Dend-Ag for decorating offers several functional effects; namely, it enhances the antibacterial properties of the produced nanomats and induces a significant increase within macrophages' cytotoxicity. The unidirectional nanostructures of the generated hybrid nanomats demonstrate unique collective physio-chemical and biological properties suitable for a wide range of biomedical applications. Here, the antibacterial properties facilitate an optimal environment, contributing to accelerated wound healing.
Collapse
Affiliation(s)
- Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| | - Viraj P Nirwan
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533, Kleve, Germany
| | - Dorota Kuc-Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| | - Malgorzata Lysek-Gladysinska
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, Alcalá de Henares, 28871, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, Madrid, 28034, Spain
| | - Rafael Gomez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, Alcalá de Henares, 28871, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, Madrid, 28034, Spain
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533, Kleve, Germany
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| |
Collapse
|
11
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
12
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
13
|
Nirmal GR, Lin ZC, Chiu TS, Alalaiwe A, Liao CC, Fang JY. Chemo-photothermal therapy of chitosan/gold nanorod clusters for antibacterial treatment against the infection of planktonic and biofilm MRSA. Int J Biol Macromol 2024; 268:131673. [PMID: 38642681 DOI: 10.1016/j.ijbiomac.2024.131673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.
Collapse
Affiliation(s)
- G R Nirmal
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Tai-Sheng Chiu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Alizadeh M, Dorranian D, Sari AH. Comparison of the antimicrobial photocatalytic activities of SiO 2 and Au@SiO 2 nanostructures in water decontamination. Microsc Res Tech 2024; 87:896-907. [PMID: 38149754 DOI: 10.1002/jemt.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Photocatalytic disinfection of Escherichia coli suspension by silicon dioxide nanoparticles and silicon dioxide/gold nanocomposite in a batch reactor is investigated experimentally and results are compared. Silica nanoparticles were synthesized by Stöber method and pulsed laser ablation method was employed to prepare gold nanoparticles in distilled water. Composition of two nanoparticles species was carried out, using the second harmonic pulse of Nd:YAG laser, whose wavelength is in the absorption spectra of gold nanoparticles. Results confirm a decrease in the bandgap energy of silica nanoparticles after composition. Escherichia coli were selected as an indicator of the microbial water contamination. Disk diffusion method was used to evaluate the antimicrobial potential of SiO2 and Au@SiO2 nanostructures. Photocatalytic activities of both nanostructures were examined in dark, and under the irradiation of UV and visible light. In all conditions, the performance of Au@SiO2 nanocomposites was higher than SiO2 nanoparticles. In dark condition the higher biocidal nature and activity of Au nanoparticles and for the case of UV radiation, decreasing the bandgap energy and recombination rate of SiO2 nanoparticles after composition with Au increased the efficiency. For the case of visible light radiation, surface plasmon resonances effects, and local heat of Au nanoparticles were responsible for increasing the efficiency. RESEARCH HIGHLIGHTS: Doping large bandgap semiconductors nanostructures, such as silica with metal nanoparticles, such as gold will improve their photocatalytic activity to work in visible light. In this mechanism, gold nanoparticles act as effective traps to prevent the recombination of photogenerated electron-hole pairs. Other mechanisms, such as Schottky barrier formation, surface plasmon resonance absorption of gold nanoparticles, and biocidal nature of the gold nanoparticles are effective in increasing the efficiency of Au doped silica nanostructures.
Collapse
Affiliation(s)
- Mahsa Alizadeh
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Dorranian
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
16
|
Huang X, Hu Q, Li J, Yao W, Wang C, Feng Y, Song W. Sputtering-Deposited Ultra-Thin Ag-Cu Films on Non-Woven Fabrics for Face Masks with Antimicrobial Function and Breath NO x Response. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1574. [PMID: 38612088 PMCID: PMC11012588 DOI: 10.3390/ma17071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
The multifunctional development in the field of face masks and the growing demand for scalable manufacturing have become increasingly prominent. In this study, we utilized high-vacuum magnetron sputtering technology to deposit a 5 nm ultra-thin Ag-Cu film on non-woven fabric and fabricated ultra-thin Ag-Cu film face masks. The antibacterial rates against Escherichia coli and Staphylococcus aureus were 99.996% and 99.978%, respectively, while the antiviral activity against influenza A virus H1N1 was 99.02%. Furthermore, the mask's ability to monitor respiratory system diseases was achieved through color change (from brownish-yellow to grey-white). The low cost and scalability potential of ultra-thin silver-copper film masks offer new possibilities for practical applications of multifunctional masks.
Collapse
Affiliation(s)
- Xuemei Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
| | - Jia Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
| | - Wenqing Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Chun Wang
- Ningbo Customs Technology Center, Ningbo 315012, China; (C.W.); (Y.F.)
| | - Yun Feng
- Ningbo Customs Technology Center, Ningbo 315012, China; (C.W.); (Y.F.)
| | - Weijie Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Navarro-López DE, Perfecto-Avalos Y, Zavala A, de Luna MA, Sanchez-Martinez A, Ceballos-Sanchez O, Tiwari N, López-Mena ER, Sanchez-Ante G. Unraveling the Complex Interactions: Machine Learning Approaches to Predict Bacterial Survival against ZnO and Lanthanum-Doped ZnO Nanoparticles. Antibiotics (Basel) 2024; 13:220. [PMID: 38534655 DOI: 10.3390/antibiotics13030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The rise in antibiotic-resistant bacteria is a global health challenge. Due to their unique properties, metal oxide nanoparticles show promise in addressing this issue. However, optimizing these properties requires a deep understanding of complex interactions. This study incorporated data-driven machine learning to predict bacterial survival against lanthanum-doped ZnO nanoparticles. The effect of incorporation of lanthanum ions on ZnO was analyzed. Even with high lanthanum concentration, no significant variations in structural, morphological, and optical properties were observed. The antibacterial activity of La-doped ZnO nanoparticles against Gram-positive and Gram-negative bacteria was qualitatively and quantitatively evaluated. Nanoparticles induce 60%, 95%, and 55% bacterial death against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, respectively. Algorithms such as Multilayer Perceptron, K-Nearest Neighbors, Gradient Boosting, and Extremely Random Trees were used to predict the bacterial survival percentage. Extremely Random Trees performed the best among these models with 95.08% accuracy. A feature relevance analysis extracted the most significant attributes to predict the bacterial survival percentage. Lanthanum content and particle size were irrelevant, despite what can be assumed. This approach offers a promising avenue for developing effective and tailored strategies to reduce the time and cost of developing antimicrobial nanoparticles.
Collapse
Affiliation(s)
- Diego E Navarro-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Yocanxóchitl Perfecto-Avalos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Araceli Zavala
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Marco A de Luna
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Araceli Sanchez-Martinez
- Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico
| | - Oscar Ceballos-Sanchez
- Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| |
Collapse
|
18
|
Ariga K. 2D Materials Nanoarchitectonics for 3D Structures/Functions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:936. [PMID: 38399187 PMCID: PMC10890396 DOI: 10.3390/ma17040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
19
|
Safarkhani M, Farasati Far B, Lima EC, Jafarzadeh S, Makvandi P, Varma RS, Huh Y, Ebrahimi Warkiani M, Rabiee N. Integration of MXene and Microfluidics: A Perspective. ACS Biomater Sci Eng 2024; 10:657-676. [PMID: 38241520 DOI: 10.1021/acsbiomaterials.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The fusion of MXene-based materials with microfluidics not only presents a dynamic and promising avenue for innovation but also opens up new possibilities across various scientific and technological domains. This Perspective delves into the intricate synergy between MXenes and microfluidics, underscoring their collective potential in material science, sensing, energy storage, and biomedical research. This intersection of disciplines anticipates future advancements in MXene synthesis and functionalization as well as progress in advanced sensing technologies, energy storage solutions, environmental applications, and biomedical breakthroughs. Crucially, the manufacturing and commercialization of MXene-based microfluidic devices, coupled with interdisciplinary collaborations, stand as pivotal considerations. Envisioning a future where MXenes and microfluidics collaboratively shape our technological landscape, addressing intricate challenges and propelling innovation forward necessitates a thoughtful approach. This viewpoint provides a comprehensive assessment of the current state of the field while outlining future prospects for the integration of MXene-based entities and microfluidics.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684611367, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Avenida Bento Goncalves 9500, Caixa Postal 15003, Porto Alegre CEP 91501-970, Rio Grande do Sul, Brazil
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - YunSuk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
20
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
21
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
22
|
Mirzania F, Salimikia I, Ghasemian Yadegari J, Marzban A, Firouzi A, Nazarzadeh A, Aalaei J. Biological Activities of Zinc Oxide Nanoparticles Green Synthesized Using the Aqueous Extract of Dracocephalum kotschyi Boiss. Curr Drug Discov Technol 2024; 21:e271223224899. [PMID: 38151833 DOI: 10.2174/0115701638284118231220074251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Dracocephalum kotschyi Boiss. is known as a native medicinal plant of Iran. OBJECTIVE In this study, aqueous extract of D. kotschyi was used to synthesize ZnO-NPs. To produce ZnO-NPs, aerial parts of D. kotschyi were powdered and then macerated for obtaining aqueous extract, after that, aqueous extract was used to reduse zinc nitrate to ZnO-NPs. METHODS To confirm nanoparticles synthesis, SEM, TEM, UV-Vis, FTIR, and XRD were used. The synthesized ZnO-NPs were studied for antimicrobial activities by microdilution method for calculating MIC and MBC. Analysis of ZnO-NPs confirmed successful synthesis by extract of D. kotschyi. RESULTS The sizes of ZnO-NPs were estimated 50-200 nm in diameter. Antibacterial and antifungal experiments showed potent activities against Staphylococos aureus, Pseudomonas aeruginosa and Candida albicans. The results of the studies showed that the nanoparticles synthesized with the aqueous extract of D. kotschyi have a much greater antimicrobial effect than the aqueous extract of D. kotschyi and zinc nanoparticles, each alone (MIC values 3.7 to 7.5 mg/ml). CONCLUSION The noteworthy point is that the inhibitory rate of synthesized zinc oxide nanoparticles is higher compared to broad-spectrum antibiotics, such as chloramphenicol (MIC values 15 mg/ml). Determining the therapeutic and toxic dose of this product for humans requires further investigation and clinical trials.
Collapse
Affiliation(s)
- Foroogh Mirzania
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Iraj Salimikia
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amirmasoud Firouzi
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Nazarzadeh
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javid Aalaei
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
23
|
Li D, Mo K, Liang B, Huang Y, Tan X, Wang Z, Yang X. The impact of different antibiotic injection regimens on patients with severe infections: A meta-analysis. Int Wound J 2024; 21:e14514. [PMID: 38272804 PMCID: PMC10791546 DOI: 10.1111/iwj.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/27/2024] Open
Abstract
Severe infection is a critical health threat to humans, and antibiotic treatment is one of the main therapeutic approaches. Nevertheless, the efficacy of various antibiotic injection regimens in severe infection patients remains uncertain. This study aimed to comprehensively evaluate the impact of various antibiotic injection strategies on patients with severe infection through a meta-analysis. Relevant research literature was collected by searching databases such as PubMed, Embase, and Cochrane Library. The retrieved literature was screened according to inclusion and exclusion criteria. Relevant data, including study design, sample size, and antibiotic regimens, were extracted from the included studies. The Cochrane Collaboration's Risk of Bias tool was employed to assess the risk of bias in each study. Statistical analysis was performed based on the results of the included studies. A total of 15 articles were included, covering various types of severe infection patients, including pulmonary and abdominal infections. The analysis provided insights into mortality rates, treatment efficacy, adverse reactions (ARs), Acute Physiology and Chronic Health Evaluation (APACHE) scores, among other outcomes. The results indicated that combination therapy was superior to monotherapy in terms of mortality rate, treatment efficacy, and APACHE scores, while the incidence of ARs was lower in the monotherapy group compared to the combination therapy group (p < 0.05). Combination therapy showed better treatment efficacy compared to monotherapy, although it was associated with a higher incidence of ARs.
Collapse
Affiliation(s)
- Da Li
- Intensive Care UnitThe People’s Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Kanglin Mo
- Respiratory EndoscopyThe First Affiliated Hospital of Guangxi Mediacal UniversityNanningChina
| | - Binqi Liang
- Intensive Care UnitThe People’s Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | | | - Xingling Tan
- Department of General PracticeThe First Affiliated Hospital of Guangxi Mediacal UniversityNanningChina
| | - Zengrui Wang
- Department of General PracticeThe First Affiliated Hospital of Guangxi Mediacal UniversityNanningChina
| | - Xia Yang
- Department of General PracticeThe First Affiliated Hospital of Guangxi Mediacal UniversityNanningChina
| |
Collapse
|
24
|
Farooq M, Bilal MI, Gohar S, Khalid M, Haider MK, Kim IS. Antibacterial Activity of Molybdenum Oxide-Polyacrylonitrile Composite Membrane with Fast Silver Ion Reduction. ACS OMEGA 2023; 8:49467-49477. [PMID: 38162752 PMCID: PMC10753726 DOI: 10.1021/acsomega.3c08814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The development of hybrid composite antibacterial agents for wound dressing has garnered significant attention due to their remarkable antibacterial efficacy and their potential to mitigate microbial resistance. In this study, we present an approach to designing and fabricating wound dressing membranes, utilizing molybdenum oxide-polyacrylonitrile (MoO3/PAN) hybrid composites through electrospinning. Subsequently, we enhanced the membrane's effectiveness by introducing silver (Ag@MoO3/PAN) into the matrix via a rapid (within one min) green synthesis method under UV irradiation. Initially, we discuss the morphological characteristics and structural attributes of the resulting membranes. Subsequent investigations explore the antibacterial mechanisms of both MoO3 and Ag+, revealing that the incorporation of silver substantially enhanced antibacterial activity. Additionally, we elucidate the surface properties, noting that the introduction of silver increases the surface area of the composite membrane by 25.89% compared with the pristine MoO3/PAN membrane. Furthermore, we observe a 9% reduction in the water contact angle (WCA) for the Ag@MoO3/PAN membrane, indicating improved hydrophilicity. Finally, we analyze the release behavior of the Ag@MoO3/PAN membrane. Our findings demonstrate an initial burst release within the first 7 h, followed by a controlled and sustained release pattern over a period of 7 days.
Collapse
Affiliation(s)
- Muhammad Farooq
- Graduate
School of Medicine, Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano
Fusion Technology Research Group, Institute for Fiber Engineering
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Muhammad Imran Bilal
- Department
of Chemistry, School of Science, University
of Management and Technology, Lahore 54770, Pakistan
| | - Sabeen Gohar
- Graduate
School of Medicine, Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano
Fusion Technology Research Group, Institute for Fiber Engineering
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Maira Khalid
- Graduate
School of Medicine, Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano
Fusion Technology Research Group, Institute for Fiber Engineering
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Md. Kaiser Haider
- Graduate
School of Medicine, Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano
Fusion Technology Research Group, Institute for Fiber Engineering
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Ick Soo Kim
- Graduate
School of Medicine, Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano
Fusion Technology Research Group, Institute for Fiber Engineering
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
25
|
Yan M, Fu LL, Feng HC, Namadchian M. Application of Ag nanoparticles decorated on graphene nanosheets for electrochemical sensing of CEA as an important cancer biomarker. ENVIRONMENTAL RESEARCH 2023; 239:117363. [PMID: 37838192 DOI: 10.1016/j.envres.2023.117363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this research, a novel biosensing platform is described based on graphene nano-sheets decorated with Ag nano-particles (GNSs@Ag NPs). The designed electrochemical aptasensor was employed to determine carcinoembryonic antigen (CEA), an important cancer biomarker. Inherently, aptasensing interfaces provide high sensitivity for CEA tumor marker because of the high specific surface area and excellent conductivity of the prepared GNSs@Ag NPs composite. The established assay demonstrated a wide linear range from 0.001 pg/mL to 10 pg/mL with a correlation coefficient of 0.9958 and low detection limit (DL) of 0.5 fg/mL based on S/N = 3 protocol. The derived biosensor illustrated acceptable selectivity towards common interfering species including HER2, VEGF, IgG, MUC1 and CFP10. In addition, the aptsensor showed good reproducibility and fast response time. The applicability of the suggested strategy in human serum samples was also examined and compared to the commercial enzyme-linked immunosorbent assay (ELISA). Based on the experimental data, it was found that the discussed sensing platform can be exerted in the monitoring of CEA in different cancers for early diagnosis.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China.
| | - Melika Namadchian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Almeida AM, Moreira LG, Camacho SA, Ferreira FG, Conceição K, Tada DB, Aoki PHB. Photochemical outcomes triggered by gold shell-isolated nanorods on bioinspired nanoarchitectonics for bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184216. [PMID: 37598878 DOI: 10.1016/j.bbamem.2023.184216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Boosted by the indiscriminate use of antibiotics, multidrug-resistance (MDR) demands new strategies to combat bacterial infections, such as photothermal therapy (PTT) based on plasmonic nanostructures. PTT efficiency relies on photoinduced damage caused to the bacterial machinery, for which nanostructure incorporation into the cell envelope is key. Herein, we shall unveil the binding and photochemical mechanisms of gold shell-isolated nanorods (AuSHINRs) on bioinspired bacterial membranes assembled as Langmuir and Langmuir-Schaefer (LS) monolayers of DOPE, Lysyl-PG, DOPG and CL. AuSHINRs incorporation expanded the isotherms, with stronger effect on the anionic DOPG and CL. Indeed, FTIR of LS films revealed more modifications for DOPG and CL owing to stronger attractive electrostatic interactions between anionic phosphates and the positively charged AuSHINRs, while electrostatic repulsions with the cationic ethanolamine (DOPE) and lysyl (Lysyl-PG) polar groups might have weakened their interactions with AuSHINRs. No statistical difference was observed in the surface area of irradiated DOPE and Lysyl-PG monolayers on AuSHINRs, which is evidence of the restricted nanostructures insertion. In contrast, irradiated DOPG monolayer on AuSHINRs decreased 4.0 % in surface area, while irradiated CL monolayer increased 3.7 %. Such results agree with oxidative reactions prompted by ROS generated by AuSHINRs photoactivation. The deepest AuSHINRs insertion into DOPG may have favored chain cleavage while hydroperoxidation is the mostly like outcome in CL, where AuSHINRs are surrounding the polar groups. Furthermore, preliminary experiments on Escherichia coli culture demonstrated that the electrostatic interactions with AuSHINRs do not inhibit bacterial growth, but the photoinduced effects are highly toxic, resulting in microbial inactivation.
Collapse
Affiliation(s)
- Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Fabiana G Ferreira
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Katia Conceição
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Dayane B Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
27
|
Younis HM, Hussein HA, Khaphi FL, Saeed ZK. Green biosynthesis of silver and gold nanoparticles using Teak ( Tectona grandis) leaf extract and its anticancer and antimicrobial activity. Heliyon 2023; 9:e21698. [PMID: 38027825 PMCID: PMC10663833 DOI: 10.1016/j.heliyon.2023.e21698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The green synthesis of nanoparticles (NPs) utilizing a green path is eco-friendly and profitable compared to traditional physical and chemical techniques. This research conducted a green synthesis of gold NPs (AuNPs) and silver NPs (AgNPs) using an extract of Teak (Tectona grandis) and their anticancer and anti-microbial activities. Various techniques like transmission-electron microscopy (TEM), UV-Vis spectroscopy, thermal-gravimetric analyses (TGA), X-ray diffraction (XRD), and Fourier transform-infrared spectroscopy (FT-IR) were used to analyze synthesized AuNPs and AgNPs. The effects of different factors like the amount of extract used, solution pH, and contact time were measured to obtain the best possible conditions for synthesizing NPs. The AgNPs showed significant anticancer activity against HepG2 with an IC50 of 6.17 mg/ml compared to Teak extract (>50 mg/ml) and AuNPs (44.1 mg/ml), while AuNPs (6 % Teak extract and 2.9 × 10-3 M HAuCl4) showed significant antibacterial and antifungal activity against Pseudomonas aeruginosa, Aspergillus niger, Bacillus subtilis, and Escherichia coli with an inhibition zone of 11 mm, 12 mm, 12.5 mm, and 15.5 mm, respectively as compared to other treatments. These findings confirmed the medical applications of AuNPs and AgNPs and might open new possibilities in this field.
Collapse
|
28
|
Hamdy SM, Danial AW, Halawani EM, Shoreit AAM, Hesham AEL, Gad El-Rab SMF. Biofabrication strategy of silver-nanodrug conjugated polyhydroxybutyrate degrading probiotic and its application as a novel wound dressing. Int J Biol Macromol 2023; 250:126219. [PMID: 37567518 DOI: 10.1016/j.ijbiomac.2023.126219] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Wound infections with rising incidences of multi-drug resistant bacteria are among the public health problems worldwide. The current study describes wound dressing materials made from biodegradable polyhydroxybutyrate (PHB) combined with AgNPs and gelatin (AgNPs/Gelatin/PHB). Microbial PHB was mixed with gelatin (1:2) to form a polymer matrix which was loaded with different concentrations of AgNPs (8.3-133 μg/mL). The statistical results of AgNPs synthesizing based on Box-Behnken design revealed that 1.247 mM silver nitrate and 24.054 % of Corchorus olitorius leaf extract concentration at pH (8.07) were the optimum values for the biosynthesis. UV-Vis spectroscopy, FTIR study and XRD reflects that nanoparticles are formed. The UV-Vis spectroscopy of Gelatin/PHB/AgNPs exhibited two specific bands at 298 nm and 371 nm, which confirm the formation of the conjugate. AgNPs had MICs and MBCs of (24.9, 24.9, and 12.45 μg/mL) and (33.25, 33.25, and 16.6 μg/mL) against (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). The MIC and MBC of AgNPs/Gelatin/PHB against the same tested bacteria were 31.1 μg and 41.5 μg, respectively. AgNPs/Gelatin/PHB exhibit excellent antimicrobial efficacy against bacteria. Sterilized gauze loaded with 31.1 μg of AgNPs/Gelatin/PHB acted as an effective wound dressing. Thus, the study highlights the importance of wound dressings developed from degradable AgNPs/Gelatin/PHB in enhancing antimicrobial efficiency and facilitating a better wound healing process.
Collapse
Affiliation(s)
| | - Amal W Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Eman M Halawani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed A M Shoreit
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Sanaa M F Gad El-Rab
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
29
|
Khan S, Rafi Z, Mishra P, Al-Keridis LA, Farooqui A, Mansoor S, Alshammari N, Al-Saeed FA, Siddiqui S, Saeed M. Unleashing the Potential of Benincasa hispida Peel Extract: Synthesizing Selenium Nanoparticles with Remarkable Antibacterial and Anticancer Properties. Mol Biotechnol 2023:10.1007/s12033-023-00884-y. [PMID: 37752300 DOI: 10.1007/s12033-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023]
Abstract
In this study, we successfully synthesized selenium nanoparticles (P-SeNPs) using an environment-friendly approach. This method involves utilizing the aqueous peel extract of Benincasa hispida (ash gourd) in combination with selenium salt. Through our innovative procedure, we harnessed the impressive bio-reduction capabilities, therapeutic potential, and stabilizing attributes inherent in B. hispida. This results in the formation of P-SeNPs with distinct and noteworthy qualities. Our findings were thoroughly substantiated through comprehensive characterizations employing various techniques, including ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and Fourier transform infrared spectroscopy (FTIR). The nanoparticles exhibited a spherical shape, considerable size (22.32 ± 2 nm), uniform distribution, and remarkable stability (-24 mV), all of which signify the effective integration of the phytoconstituents of B. hispida. Furthermore, P-SeNPs displayed robust antibacterial efficacy against pathogenic bacterial strains, as indicated by their low minimum inhibitory concentration values. Our research also revealed the remarkable ability of P-SeNPs to fight cancer, as demonstrated by their impressive IC50 value of 0.19 µg/mL against HeLa cells, while showing no harm to primary human osteoblasts, while simultaneously demonstrating no toxicity toward primary human osteoblasts. These pivotal findings underscore the transformative nature of P-SeNPs, which holds promise for targeted antibacterial treatment and advancements in cancer therapeutics. The implications of these nanoparticles extend to their potential applications in therapies, diagnostics, and various biomedical contexts. Notably, the environmentally sustainable synthesis process and exceptional properties established this study as a significant milestone in the field of nanomedicine, paving the way for a more promising and health-enhancing future.
Collapse
Affiliation(s)
- Salman Khan
- Nanotechnology and Nanomedicine Lab-6 (IIRC), Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Zeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Pooja Mishra
- Nanotechnology and Nanomedicine Lab-6 (IIRC), Department of Biosciences, Integral University, Lucknow, 226026, India.
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Shazia Mansoor
- Department of Research, Jawaharlal Nehru Cancer Hospital, and Research Centre, Bhopal, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, 34464, Hail, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, Hail, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, 34464, Hail, Saudi Arabia.
| |
Collapse
|
30
|
M. Aldebasi S, Tar H, S. Alnafisah A, Beji L, Kouki N, Morlet-Savary F, Alminderej FM, Aroua LM, Lalevée J. Photochemical Synthesis of Noble Metal Nanoparticles: Influence of Metal Salt Concentration on Size and Distribution. Int J Mol Sci 2023; 24:14018. [PMID: 37762321 PMCID: PMC10530956 DOI: 10.3390/ijms241814018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This paper explores the photochemical synthesis of noble metal nanoparticles, specifically gold (Au) and silver (Ag) nanoparticles, using a one-component photoinitiator system. The synthesis process involves visible light irradiation at a wavelength of 419 nm and an intensity of 250 mW/cm2. The radical-generating capabilities of the photoinitiators were evaluated using electron spin resonance (ESR) spectroscopy. The main objective of this study was to investigate how the concentration of metal salts influences the size and distribution of the nanoparticles. Proposed mechanisms for the photochemical formation of nanoparticles through photoinitiated radicals were validated using cyclic voltammetry. The results showed that the concentration of AgNO3 significantly impacted the size of silver nanoparticles, with diameters ranging from 1 to 5 nm at 1 wt% and 3 wt% concentrations, while increasing the concentration to 5 wt% led to an increase in the diameter of silver nanoparticles to 16 nm. When HAuCl4 was used instead of AgNO3, it was found that the average diameters of gold nanoparticles synthesized using both photoinitiators at different concentrations ranged between 1 and 4 nm. The findings suggest that variations in HAuCl4 concentration have minimal impact on the size of gold nanoparticles. The photoproduction of AuNPs was shown to be thermodynamically favorable, with the reduction of HAuCl4 to Au0 having ∆G values of approximately -3.51 and -2.96 eV for photoinitiators A and B, respectively. Furthermore, the photoreduction of Ag+1 to Ag0 was demonstrated to be thermodynamically feasible, with ∆G values of approximately -3.459 and -2.91 eV for photoinitiators A and B, respectively, confirming the effectiveness of the new photoinitiators on the production of nanoparticles. The synthesis of nanoparticles was monitored using UV-vis absorption spectroscopy, and their sizes were determined through particle size analysis of transmission electron microscopy (TEM) images.
Collapse
Affiliation(s)
- Shahad M. Aldebasi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Haja Tar
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Abrar S. Alnafisah
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Lotfi Beji
- Department of Physics, College of Sciences and Arts at ArRass, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Noura Kouki
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Fabrice Morlet-Savary
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France; (F.M.-S.); (J.L.)
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Jacques Lalevée
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France; (F.M.-S.); (J.L.)
| |
Collapse
|
31
|
Ailincai D, Morariu S, Rosca I, Sandu AI, Marin L. Drug delivery based on a supramolecular chemistry approach by using chitosan hydrogels. Int J Biol Macromol 2023; 248:125800. [PMID: 37442500 DOI: 10.1016/j.ijbiomac.2023.125800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Microbial infections are a serious healthcare related problem, causing several complications and even death. That is why, the development of new drug delivery systems with prolonged effect represents an interesting research topic. This study presents the synthesis and characterization of new hydrogels based on chitosan and three halogenated monoaldehydes. Further, the hydrogels were used as excipients for the development of drug delivery systems (DDS) by the incorporation of fluconazole, an antifungal drug. The systems were structurally characterized by Fourier Transformed Infrared Spectroscopy and Nuclear Magnetic Resonance, both methods revealing the formation of the imine linkages between chitosan and the aldehydes. The samples presented a high degree of ordering at supramolecular level, as demonstrated by WXRD and POM and a good water-uptake, reaching a maximum of 1.6 g/g. The obtained systems were biodegradable, loosing between 38 and 49 % from their initial mass in the presence of lysozyme in 21 days. The ability to release the antifungal drug in a sustained manner for seven days, along with the high values of the inhibition zone diameter, reaching a maximum of 64 mm against Candida parapsilosis for the chlorine containing sample, recommend these systems as promising materials for bioapplications.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania.
| | - Simona Morariu
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Andreea Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| |
Collapse
|
32
|
Quadir S, Khan NA, Singh DK, Faraz A, Jhingan GD, Joshi MC. Exposure to High Dosage of Gold Nanoparticles Accelerates Growth Rate by Modulating Ribosomal Protein Expression. ACS NANO 2023; 17:15529-15541. [PMID: 37548618 DOI: 10.1021/acsnano.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gold nanoparticles (AuNPs) have been utilized in various biomedical applications including diagnostics and drug delivery. However, the cellular and metabolic responses of cells to these particles remain poorly characterized. In this study, we used bacteria (Escherichia coli and Bacillus subtilis) and a fungus (Saccharomyces cerevisiae) as model organisms to investigate the cellular and metabolic effects of exposure to different concentrations of citrate-capped spherical AuNPs with diameters of 5 and 10 nm. In different growth media, the synthesized AuNPs displayed stability and microorganisms exhibited uniform levels of uptake. Exposure to a high concentration of AuNPs (1012 particles) resulted in a reduced cell division time and a 2-fold increase in cell density in both bacteria and fungus. The exposed cells exhibited a decrease in average cell size and an increase in the expression of FtsZ protein (cell division marker), further supporting an accelerated growth rate. Notably, exposure to such a high concentration of AuNPs did not induce DNA damage, envelope stress, or a general stress response in bacteria. Differential whole proteome analysis revealed modulation of ribosomal protein expression upon exposure to AuNPs in both E. coli and S. cerevisiae. Interestingly, the accelerated growth observed upon exposure to AuNPs was sensitive to sub-minimum inhibitory concentration (sub-MIC) concentration of drugs that specifically target ribosome assembly and recycling. Based upon these findings, we hypothesize that exposure to high concentrations of AuNPs induces stress on the translation machinery. This leads to an increase in the protein synthesis rate by modulating ribosome assembly, which results in the rapid proliferation of cells.
Collapse
Affiliation(s)
- Shabina Quadir
- Multidisciplinary Centre for Advance Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Nuha Abeer Khan
- Multidisciplinary Centre for Advance Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Deepak Kumar Singh
- Multidisciplinary Centre for Advance Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Amir Faraz
- Multidisciplinary Centre for Advance Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Mohan Chandra Joshi
- Multidisciplinary Centre for Advance Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
33
|
Hassan M, Diab MA, Abd El-Wahab MG, Hegazi AH, Emwas AH, Jaremko M, Hagar M. Bismuth Oxide Composite-Based Agricultural Waste for Wound Dressing Applications. Molecules 2023; 28:5900. [PMID: 37570869 PMCID: PMC10421204 DOI: 10.3390/molecules28155900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to enhance the antimicrobial activity of bagasse paper by coating the paper with bismuth oxide (Bi2O3) and using it to accelerate the process of wound healing. Paper sheets were prepared from sugarcane waste (bagasse). First, the paper sheets were coated with different Bi2O3 concentrations to improve the antimicrobial activity of the paper. After that, the paper sheets were allowed to dry in an oven at 50 °C for 3 h. Then, in vitro antimicrobial activity was evaluated against different microbial species, including Gram-negative bacteria (i.e., Klebsiella pneumonia, Escherichia coli) and Gram-positive bacteria (i.e., Staphylococcus aureus, Streptococcus pyogenes). The obtained results showed that the paper coated with 25% and 100% Bi2O3 had activity against all models of bacteria; however, the paper coated with 100% Bi2O3 composite had the strongest inhibitory effect. Then, bagasse paper was coated with 100% Bi2O3 and different antibiotics, to investigate their wound-healing potency in a wounded rat model for 14 days. Moreover, the paper coated with 100% Bi2O3 inhibited the cellular migration in vitro. Conclusively, coating paper with Bi2O3 enhances the wound-healing potential when applied to wounds. This impact could be ascribed to Bi2O3's broad antibacterial activity, which reduced infection and accelerated the healing process.
Collapse
Affiliation(s)
- Mayar Hassan
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed A. Diab
- National Research Center, Cellulose and Paper Department, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza 12622, Egypt
| | - Miral G. Abd El-Wahab
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation, Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab 21934, Egypt
| | - Abdelrahman H. Hegazi
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Abdul-Hamid Emwas
- Core Labs., King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
34
|
Thulasinathan B, D S, Murugan S, Panda SK, Veerapandian M, Manickam P. DNA-functionalized carbon quantum dots for electrochemical detection of pyocyanin: A quorum sensing molecule in Pseudomonas aeruginosa. Biosens Bioelectron 2023; 227:115156. [PMID: 36842368 DOI: 10.1016/j.bios.2023.115156] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The electrochemical biosensing strategy for pyocyanin (PYO), a virulent quorum-sensing molecule responsible for Pseudomonas aeruginosa infections, was developed by mimicking its extracellular DNA interaction. Calf thymus DNA (ct-DNA) functionalized amine-containing carbon quantum dots (CQDs) were used as a biomimetic receptor for electrochemical sensing of PYO as low as 37 nM in real urine sample. The ct-DNA-based biosensor enabled the selective measurement of PYO in the presence of other interfering species. Calibration and validation of the PYO sensor platform were demonstrated in buffer solution (0-100 μM), microbial culture media (0-100 μM), artificial urine (0-400 μM), and real urine sample (0-250 μM). The sensor capability was successfully implemented for point-of-care (POC) detection of PYO release from Pseudomonas aeruginosa strains during lag and stationary phases. Cross-reactivity of the sensing platform was also tested in other bacterial species such as Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pneumoniae. Potential clinical implementation of the ct-DNA-based sensor was manifested in detecting the PYO in P. aeruginosa cultured baby diaper and sanitary napkin. Our results highlight that the newly developed ct-DNA-based sensing platform can be used as a potential candidate for real-time POC diagnosis of Pseudomonas aeruginosa infection in clinical samples.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sujatha D
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sethupathi Murugan
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Subhendu K Panda
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Murugan Veerapandian
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Pandiaraj Manickam
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.
| |
Collapse
|
35
|
Abu Jarad N, Rachwalski K, Bayat F, Khan S, Shakeri A, MacLachlan R, Villegas M, Brown ED, Hosseinidoust Z, Didar TF, Soleymani L. A Bifunctional Spray Coating Reduces Contamination on Surfaces by Repelling and Killing Pathogens. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16253-16265. [PMID: 36926806 DOI: 10.1021/acsami.2c23119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface-mediated transmission of pathogens is a major concern with regard to the spread of infectious diseases. Current pathogen prevention methods on surfaces rely on the use of biocides, which aggravate the emergence of antimicrobial resistance and pose harmful health effects. In response, a bifunctional and substrate-independent spray coating is presented herein. The bifunctional coating relies on wrinkled polydimethylsiloxane microparticles, decorated with biocidal gold nanoparticles to induce a "repel and kill" effect against pathogens. Pathogen repellency is provided by the structural hierarchy of the microparticles and their surface chemistry, whereas the kill mechanism is achieved using functionalized gold nanoparticles embedded on the microparticles. Bacterial tests with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa reveal a 99.9% reduction in bacterial load on spray-coated surfaces, while antiviral tests with Phi6─a bacterial virus often used as a surrogate to SARS-CoV-2─demonstrate a 98% reduction in virus load on coated surfaces. The newly developed spray coating is versatile, easily applicable to various surfaces, and effective against various pathogens, making it suitable for reducing surface contamination in frequently touched, heavy traffic, and high-risk surfaces.
Collapse
Affiliation(s)
- Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, ON, Canada
| | - Kenneth Rachwalski
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Amid Shakeri
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Roderick MacLachlan
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, ON, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
- School of Biomedical Engineering, Department of Mechanical Engineering, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, ON, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, ON, Canada
- School of Biomedical Engineering and Department of Engineering Physics, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton L8S 4L7, Canada
| |
Collapse
|
36
|
Huang W, Hu B, Yuan Y, Fang H, Jiang J, Li Q, Zhuo Y, Yang X, Wei J, Wang X. Visible Light-Responsive Selenium Nanoparticles Combined with Sonodynamic Therapy to Promote Wound Healing. ACS Biomater Sci Eng 2023; 9:1341-1351. [PMID: 36825832 DOI: 10.1021/acsbiomaterials.2c01119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In this paper, we synthesized selenium nanoparticles (SeNPs) that could be effectively excited by pure yellow light (YL) source to enhance antibacterial ability. Meanwhile, YL could also play the role of anti-inflammatory and promote wound healing. In addition, in order to overcome the problem of low penetration depth of photodynamic therapy (PDT), SeNPs were encapsulated with polyethylenimine (PEI), then modified with the sound sensitive agent indocyanine green (ICG), realizing the combined photoacoustic therapy to promote the healing of wounds infected by drug-resistant bacteria. The antibacterial efficiency of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) reached more than 99% in in vitro and in vivo experiments within 10 min, which could safely and quickly kill drug-resistant bacteria to repair and heal wounds.
Collapse
Affiliation(s)
- Wenjing Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Binbin Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Yalin Yuan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Huaqiang Fang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Junkai Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Qun Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Yi Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Xuetao Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Jinlu Wei
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| |
Collapse
|
37
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
38
|
Shi K, Zhang H, Gu Y, Liang Z, Zhou H, Liu H, Liu J, Xie G. Electric Spark Deposition of Antibacterial Silver Coating on Microstructured Titanium Surfaces with a Novel Flexible Brush Electrode. ACS OMEGA 2022; 7:47108-47119. [PMID: 36570305 PMCID: PMC9773945 DOI: 10.1021/acsomega.2c06253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Infection caused by orthopedic titanium implants, which results in tissue damage, is a key factor in endosseous implant failure. Given the seriousness of implant infections and the limitations of antibiotic therapy, surface microstructures and antimicrobial silver coatings have emerged as prominent research areas and have displayed certain antimicrobial effects. Researchers are now working to combine the two to produce more effective antimicrobial surfaces. However, building robust and homogeneous coatings on complex microstructured surfaces is a tough task due to the limits of surface modification techniques. In this study, a novel flexible electrode brush (silver brush) instead of a traditional hard electrode was designed with electrical discharge machining, which has the ability to adapt to complex groove interiors. The results showed that the use of flexible electrode brush allowed silver to be deposited uniformly in titanium alloy microgrooves. On the surface of Ag-TC4, a uniformly covered deposit was visible, and it slowly released silver ions into a liquid environment. In vitro bacterial assays showed that a Ag-TC4 microstructured surface reduced bacterial adhesion and bacterial biofilm formation, and the antibacterial activity of Ag-TC4 against Staphylococcus aureus and Escherichia coli was 99.68% ± 0.002 and 99.50% ± 0.007, respectively. This research could lay the groundwork for the study of antimicrobial metal bound to microstructured surfaces and pave the way for future implant surface design.
Collapse
Affiliation(s)
- Kaihui Shi
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Hao Zhang
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Yuyan Gu
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Zhijie Liang
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Huanyu Zhou
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Haojie Liu
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Jiangwen Liu
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Guie Xie
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| |
Collapse
|
39
|
Krbečková V, Šimonová Z, Langer P, Peikertová P, Kutláková KM, Thomasová B, Plachá D. Effective and reproducible biosynthesis of nanogold-composite catalyst for paracetamol oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87764-87774. [PMID: 35821312 PMCID: PMC9275540 DOI: 10.1007/s11356-022-21868-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 05/27/2023]
Abstract
Pharmaceutical products are some of the most serious emergent pollutants in the environment, especially nowadays of the COVID-19 pandemic. In this study, nanogold-composite was prepared, and its catalytic activity for paracetamol degradation was investigated. Moreover, for the first time, recycled waste diatomite earth (WDE) from beer filtration was used for reproducible gold nanoparticle (Au NPs) preparation. We studied Au NPs by various psychical-chemical and analytical methods. Transmission and scanning electron microscopy were used for nanogold-composite morphology, size and shape characterization. Total element concentrations were determined using inductively coupled plasma mass and X-ray fluorescence spectrometry. X-ray powder diffraction analysis was used for crystal structure characterization of samples. Fourier transform infrared spectrometer was used to study the chemical changes before and after Au NP formation. The results revealed that the WDE served as both a reducing and a stabilizing agent for crystalline spherical 30 nm Au NPs as well as acting as a direct support matrix. The kinetics of paracetamol degradation was studied by high-performance liquid chromatography with a photodiode array detector. The conversion of paracetamol was 62% and 67% after 72 h in the absence or presence of light irradiation, respectively, with 0.0126 h-1 and 0.0148 h-1 reaction rate constants. The presented study demonstrates the successful use of waste material from the food industry for nanogold-composite preparation and its application as a promising catalyst in paracetamol removal.
Collapse
Affiliation(s)
- Veronika Krbečková
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Zuzana Šimonová
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
- ENET Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Petr Langer
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Pavlína Peikertová
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Kateřina Mamulová Kutláková
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Barbora Thomasová
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Daniela Plachá
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
- ENET Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| |
Collapse
|
40
|
Ivanauskas R, Ancutienė I, Milašienė D, Ivanauskas A, Bronušienė A. Effect of Reducing Agent on Characteristics and Antibacterial Activity of Copper-Containing Particles in Textile Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7623. [PMID: 36363214 PMCID: PMC9657411 DOI: 10.3390/ma15217623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Textile materials modified with copper-containing particles have antibacterial and antiviral properties that have prospects for use in healthcare. In the study, textile materials were saturated with copper-containing particles in their entire material volume by the absorption/diffusion method. The antibacterial properties of modified textile materials were confirmed by their inhibitory effect on Staphylococcus aureus, a Gram-positive bacterium that spreads predominantly through the respiratory tract. For the modification, ordinary textile materials of various origins and fiber structures were used. Technological conditions and compositions of modifying solutions were established, as well as the most suitable textile materials for modification. To assess the morphological and physical characteristics of copper-containing particles and the textile materials themselves, X-ray diffraction, a scanning electron microscope, and an energy-dispersive X-ray spectrum were used. In modified textile samples, XRD data showed the presence of crystalline phases of copper (Cu) and copper (I) oxide (Cu2O). On the grounds of the SEM/EDS analysis, the saturation of textile materials with copper-containing particles depends on the structure of the textile materials and the origins of the fibers included in their composition, as well as the modification conditions and the copper precursor.
Collapse
Affiliation(s)
- Remigijus Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Ingrida Ancutienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Daiva Milašienė
- Faculty of Mechanical Engineering and Design, Department of Production Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Algimantas Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Asta Bronušienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| |
Collapse
|
41
|
Elmaidomy AH, Shady NH, Abdeljawad KM, Elzamkan MB, Helmy HH, Tarshan EA, Adly AN, Hussien YH, Sayed NG, Zayed A, Abdelmohsen UR. Antimicrobial potentials of natural products against multidrug resistance pathogens: a comprehensive review. RSC Adv 2022; 12:29078-29102. [PMID: 36320761 PMCID: PMC9558262 DOI: 10.1039/d2ra04884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Antibiotic resistance is one of the critical issues, describing a significant social health complication globally. Hence, the discovery of novel antibiotics has acquired an increased attention particularly against drug-resistant pathogens. Natural products have served as potent therapeutics against pathogenic bacteria since the glorious age of antibiotics of the mid 20th century. This review outlines the various mechanistic candidates for dealing with multi-drug resistant pathogens and explores the terrestrial phytochemicals isolated from plants, lichens, insects, animals, fungi, bacteria, mushrooms, and minerals with reported antimicrobial activity, either alone or in combination with conventional antibiotics. Moreover, newly established tools are presented, including prebiotics, probiotics, synbiotics, bacteriophages, nanoparticles, and bacteriocins, supporting the progress of effective antibiotics to address the emergence of antibiotic-resistant infectious bacteria. Therefore, the current article may uncover promising drug candidates that can be used in drug discovery in the future.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | | | - Hussein Hykel Helmy
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Emad Ashour Tarshan
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Abanoub Nabil Adly
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | - Nesma Gamal Sayed
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus) Tanta 31527 Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern Gottlieb-Daimler-Str. 49 Kaiserslautern 67663 Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
42
|
Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int J Mol Sci 2022; 23:ijms231911658. [PMID: 36232956 PMCID: PMC9569980 DOI: 10.3390/ijms231911658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
One of the most serious complications following the implantation of orthopedic biomaterials is the development of infection. Orthopedic implant-related infections do not only entail clinical problems and patient suffering, but also cause a burden on healthcare care systems. Additionally, the ageing of the world population, in particular in developed countries, has led to an increase in the population above 60 years. This is a significantly vulnerable population segment insofar as biomaterials use is concerned. Implanted materials are highly susceptible to bacterial and fungal colonization and the consequent infection. These microorganisms are often opportunistic, taking advantage of the weakening of the body defenses at the implant surface–tissue interface to attach to tissues or implant surfaces, instigating biofilm formation and subsequent development of infection. The establishment of biofilm leads to tissue destruction, systemic dissemination of the pathogen, and dysfunction of the implant/bone joint, leading to implant failure. Moreover, the contaminated implant can be a reservoir for infection of the surrounding tissue where microorganisms are protected. Therefore, the biofilm increases the pathogenesis of infection since that structure offers protection against host defenses and antimicrobial therapies. Additionally, the rapid emergence of bacterial strains resistant to antibiotics prompted the development of new alternative approaches to prevent and control implant-related infections. Several concepts and approaches have been developed to obtain biomaterials endowed with anti-infective properties. In this review, several anti-infective strategies based on biomaterial engineering are described and discussed in terms of design and fabrication, mechanisms of action, benefits, and drawbacks for preventing and treating orthopaedic biomaterials-related infections.
Collapse
|
43
|
Rezk N, Abdelsattar AS, Makky S, Hussein AH, Kamel AG, El-Shibiny A. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Express 2022; 12:108. [PMID: 35987838 PMCID: PMC9392670 DOI: 10.1186/s13568-022-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infections, especially with the emerging threat of antibiotic resistance. Therefore, this study aimed to biosynthesize Au-Ag nanoparticles using propolis as a natural reducing agent and investigate their antibacterial activity against antibiotic-resistant Staphylococcus sciuri (S. sciuri), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella enterica Typhimurium (S. enterica), besides demonstrating their anticancer activity in cancer cell lines. The biosynthesized Au@AgNPs were characterized using UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transformation Infrared (FTIR), and Scanning Electron Microscopy (SEM). Moreover, the detection of antibacterial activity was assessed through disc diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), time-killing curve, and detection of cell membrane integrity via SEM. As a result, the UV-Vis spectrum revealed the formation of Au@AgNPs in a single peak between 533 and 555 nm. Furthermore, FTIR analysis confirmed nanoparticles' green synthesis due to the presence of carbon functional groups. The formulated Au@AgNPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. The MIC and the MBC of P. aeruginosa and S. sciuri were 31.25 µg/mL. However, nanoparticles were more effective on S. enterica with MIC of 7.5 µg/mL and MBC of 15.6 µg/mL. Furthermore, the time-killing curve of the three model bacteria with the treatment was effective at 50 µg/mL. Besides, SEM of the tested bacteria indicated unintegrated bacterial cell membranes and damage caused by Au@AgNPs. Regarding the anticancer activity, the results indicated that the biosynthesized Au@AgNPs have a cytotoxic effect on HEPG2 cell lines. In conclusion, this research revealed that the green synthesized Au@AgNPs could be effective antibacterial agents against S. sciuri, P. aeruginosa, and S. enterica and anticancer agents against HEPG2.
Collapse
Affiliation(s)
- Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
44
|
Bagherzadeh M, Safarkhani M, Kiani M, Radmanesh F, Daneshgar H, Ghadiri AM, Taghavimandi F, Fatahi Y, Safari-Alighiarloo N, Ahmadi S, Rabiee N. MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery. Sci Rep 2022; 12:12105. [PMID: 35840687 PMCID: PMC9287414 DOI: 10.1038/s41598-022-16058-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 01/10/2023] Open
Abstract
The aim of this work was to provide a novel approach to designing and synthesizing a nanocomposite with significant biocompatibility, biodegradability, and stability in biological microenvironments. Hence, the porous ultra-low-density materials, metal-organic frameworks (MOFs), have been considered and the MIL-125(Ti) has been chosen due to its distinctive characteristics such as great biocompatibility and good biodegradability immobilized on the surface of the reduced graphene oxide (rGO). Based on the results, the presence of transition metal complexes next to the drug not only can reinforce the stability of the drug on the structure by preparing π-π interaction between ligands and the drug but also can enhance the efficiency of the drug by preventing the spontaneous release. The effect of utilizing transition metal complex beside drug (Doxorubicin (DOX)) on the drug loading, drug release, and antibacterial activity of prepared nanocomposites on the P. aeruginosa and S. aureus as a model bacterium has been investigated and the results revealed that this theory leads to increasing about 200% in antibacterial activity. In addition, uptake, the release of the drug, and relative cell viabilities (in vitro and in vivo) of prepared nanomaterials and biomaterials have been discussed. Based on collected data, the median size of prepared nanocomposites was 156.2 nm, and their biological stability in PBS and DMEM + 10% FBS was screened and revealed that after 2.880 min, the nanocomposite's size reached 242.3 and 516 nm respectively. The MTT results demonstrated that immobilizing PdL beside DOX leads to an increase of more than 15% in the cell viability. It is noticeable that the AST:ALT result of prepared nanocomposite was under 1.5.
Collapse
Affiliation(s)
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
45
|
Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N. A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. NANOSCALE ADVANCES 2022; 4:2367-2398. [PMID: 36134136 PMCID: PMC9418054 DOI: 10.1039/d1na00859e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 05/08/2023]
Abstract
Diabetes mellitus (DM) is a predominant chronic metabolic syndrome, resulting in various complications and high mortality associated with diabetic foot ulcers (DFUs). Approximately 15-30% of diabetic patients suffer from DFUs, which is expected to increase annually. The major challenges in treating DFUs are associated with wound infections, alterations to inflammatory responses, angiogenesis and lack of extracellular matrix (ECM) components. Furthermore, the lack of targeted therapy and efficient wound dressings for diabetic wounds often results in extended hospitalization and limb amputations. Hence, it is essential to develop and improve DFU-specific therapies. Nanomaterial-based innovative approaches have tremendous potential for preventing and treating wound infections of bacterial origin. They have greater benefits compared to traditional wound dressing approaches. In this approach, the physiochemical features of nanomaterials allow researchers to employ different methods for diabetic wound healing applications. In this review, the status and prevalence of diabetes mellitus (DM) and amputations due to DFUs in India, the pathophysiology of DFUs and their complications are discussed. Additionally, nanomaterial-based approaches such as the use of nanoemulsions, nanoparticles, nanoliposomes and nanofibers for the treatment of DFUs are studied. Besides, emerging therapeutics such as bioengineered skin substitutes and nanomaterial-based innovative approaches such as antibacterial hyperthermia therapy and gene therapy for the treatment of DFUs are highlighted. The present nanomaterial-based techniques provide a strong base for future therapeutic approaches for skin regeneration strategies in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
46
|
Pajerski W, Chytrosz-Wrobel P, Golda-Cepa M, Pawlyta M, Reczynski W, Ochonska D, Brzychczy-Wloch M, Kotarba A. Opposite effects of gold and silver nanoparticle decoration of graphenic surfaces on bacterial attachment. NEW J CHEM 2022. [DOI: 10.1039/d2nj00648k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between bacteria and nanoparticles is currently a central topic in bionanotechnology.
Collapse
Affiliation(s)
- Wojciech Pajerski
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Paulina Chytrosz-Wrobel
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika Golda-Cepa
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Miroslawa Pawlyta
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Witold Reczynski
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Dorota Ochonska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Monika Brzychczy-Wloch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|