1
|
Madrid M, Lakshmipathy U, Zhang X, Bharti K, Wall DM, Sato Y, Muschler G, Ting A, Smith N, Deguchi S, Kawamata S, Moore JC, Makovoz B, Sullivan S, Falco V, Al-Riyami AZ. Considerations for the development of iPSC-derived cell therapies: a review of key challenges by the JSRM-ISCT iPSC Committee. Cytotherapy 2024; 26:1382-1399. [PMID: 38958627 PMCID: PMC11471376 DOI: 10.1016/j.jcyt.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.
Collapse
Affiliation(s)
| | | | | | - Kapil Bharti
- National Eye Institute of the National Institutes of Health, Bethesda, USA
| | - Dominic M Wall
- Peter MacCallum Cancer Centre, Melbourne Australia; Cell Therapies Pty Ltd, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Yoji Sato
- National Institute of Health Sciences, Kawasaki, Japan
| | | | | | | | - Shuhei Deguchi
- CIRA Foundation, Facility for iPS Cell Therapy (FiT), Kyoto, Japan
| | - Shin Kawamata
- Cyto-Facto Inc., Kobe, Japan; Kobe University, Kobe, Japan.
| | | | | | | | | | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, University Medical City, Muscat, Oman
| |
Collapse
|
2
|
Swieton J, Miklosz J, Bielicka N, Frackiewicz A, Depczynski K, Stolarek M, Bonarek P, Kaminski K, Rozga P, Yusa SI, Gromotowicz-Poplawska A, Szczubialka K, Pawlak D, Mogielnicki A, Kalaska B. Synthesis, Biological Evaluation and Reversal of Sulfonated Di- and Triblock Copolymers as Novel Parenteral Anticoagulants. Adv Healthc Mater 2024:e2402191. [PMID: 39370656 DOI: 10.1002/adhm.202402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Despite targeting different coagulation cascade sites, all Food and Drug Administration-approved anticoagulants present an elevated risk of bleeding, including potentially life-threatening intracranial hemorrhage. Existing studies have not thoroughly investigated the efficacy and safety of sulfonate polymers in animal models and fully elucidate the precise mechanisms by which these polymers act. The activity and safety of sulfonated di- and triblock copolymers containing poly(sodium styrenesulfonate) (PSSS), poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS), poly(ethylene glycol) (PEG), poly(sodium methacrylate) (PMAAS), poly(acrylic acid) (PAA), and poly(sodium 11-acrylamidoundecanoate) (PAaU) blocks are synthesized and assessed. PSSS-based copolymers exhibit greater anticoagulant activity than PAMPS-based ones. Their activity is mainly affected by the total concentration of sulfonate groups and molecular weight. PEG-containing copolymers demonstrate a better safety profile than PAA-containing ones. The selected copolymer PEG47-PSSS32 exhibits potent anticoagulant activity in rodents after subcutaneous and intravenous administration. Heparin Binding Copolymer (HBC) completely reverses the anticoagulant activity of polymer in rat and human plasma. No interaction with platelets is observed. Selected copolymer targets mainly factor XII and fibrinogen, and to a lesser extent factors X, IX, VIII, and II, suggesting potential application in blood-contacting biomaterials for anticoagulation purposes. Further studies are needed to explore its therapeutic applications fully.
Collapse
Affiliation(s)
- Justyna Swieton
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Natalia Bielicka
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Aleksandra Frackiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Karol Depczynski
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Marta Stolarek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Lojasiewicza 11 St., Krakow, 30-348, Poland
| | - Piotr Bonarek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Piotr Rozga
- Drug Discovery and Early Development Department, Adamed Pharma S.A., Pienkow, Mariana Adamkiewicza 6A St., Czosnow, 05-152, Poland
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 167 Shosha, Himeji, 671-2280, Japan
| | - Anna Gromotowicz-Poplawska
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Krzysztof Szczubialka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| |
Collapse
|
3
|
Ueki M, Suzuki T, Kato Y. Large-scale cultivation of human iPS cells in bioreactor with reciprocal mixing. J Biosci Bioeng 2024; 137:149-155. [PMID: 38185598 DOI: 10.1016/j.jbiosc.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
A substantial number of human iPS cells (hiPSCs) is needed for cell therapy to be successful against various diseases. We previously reported on a bioreactor with reciprocal mixing that produces specific physical properties that differ from those of conventional bioreactors with rotary paddle stirring. Moreover, such reactors not only provide a homogeneous environment but also allow the control of spheroid size by changing the mixing speed. In this study, we applied this bioreactor to the large-scale cultivation of hiPSCs. Approximately 10 billion hiPSCs were obtained from 2.0 L of culture, and the high expression of pluripotency markers was maintained. Our findings indicate that a bioreactor with reciprocal mixing can be used for large-scale hiPSC cultivation.
Collapse
Affiliation(s)
- Masashi Ueki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshikazu Kato
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Multimix Corporation, 60 Niizo, Toda, Saitama 335-0021, Japan
| |
Collapse
|