1
|
Jiang Y, Li J, Li D, Ma Y, Zhou S, Wang Y, Zhang D. Bio-based hyperbranched epoxy resins: synthesis and recycling. Chem Soc Rev 2024; 53:624-655. [PMID: 38109059 DOI: 10.1039/d3cs00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Epoxy resins (EPs), accounting for about 70% of the thermosetting resin market, have been recognized as the most widely used thermosetting resins in the world. Nowadays, 90% of the world's EPs are obtained from the bisphenol A (BPA)-based epoxide prepolymer. However, certain limitations severely impede further applications of this advanced material, such as limited fossil-based resources, skyrocketing oil prices, nondegradability, and a "seesaw" between toughness and strength. In recent years, more and more research has been devoted to the preparation of novel epoxy materials to overcome the compromise between toughness and strength and solve plastic waste problems. Among them, the development of bio-based hyperbranched epoxy resins (HERs) is unique and attractive. Bio-based HERs synthesized from bio-derived monomers can be used as a matrix resin or a toughener resulting in partially or fully bio-based epoxy thermosets. The introduction of a hyperbranched structure can balance the strength and toughness of epoxy thermosets. Here, we especially focused on the recent progress in the development of bio-based HERs, including the monomer design, synthesis approaches, mechanical properties, degradation, and recycling strategies. In addition, we advance the challenges and perspectives to engineering application of bio-based HERs in the future. Overall, this review presents an up-to-date overview of bio-based HERs and guidance for emerging research on the sustainable development of EPs in versatile high-tech fields.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, People's Republic of China
| | - Jiang Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Dan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yunke Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Shucun Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yu Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
2
|
Carradori S, Ammazzalorso A, Niccolai S, Tanini D, D’Agostino I, Melfi F, Capperucci A, Grande R, Sisto F. Nature-Inspired Compounds: Synthesis and Antibacterial Susceptibility Testing of Eugenol Derivatives against H. pylori Strains. Pharmaceuticals (Basel) 2023; 16:1317. [PMID: 37765124 PMCID: PMC10534785 DOI: 10.3390/ph16091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The antimicrobial properties of one of the most important secondary metabolites, Eugenol (EU), inspired us to design and synthesize three different series of derivatives enhancing its parent compound's anti-Helicobacter pylori activity. Thus, we prepared semisynthetic derivatives through (A) diazo aryl functionalization, (B) derivatization of the hydroxy group of EU, and (C) elongation of the allyl radical by incorporating a chalcogen atom. The antibacterial evaluation was performed on the reference NCTC 11637 strain and on three drug-resistant clinical isolates and the minimal inhibitory and bactericidal concentrations (MICs and MBCs) highlight the role of chalcogens in enhancing the antimicrobial activity (less than 4 µg/mL for some compounds) of the EU scaffold (32-64 µg/mL).
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Alessandra Ammazzalorso
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Sofia Niccolai
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy; (S.N.); (D.T.); (A.C.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy; (S.N.); (D.T.); (A.C.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Francesco Melfi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy; (S.N.); (D.T.); (A.C.)
| | - Rossella Grande
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy;
| |
Collapse
|
3
|
Derewonko A, Fabianowski W, Siczek J. Mechanical Testing of Epoxy Resin Modified with Eco-Additives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1854. [PMID: 36902970 PMCID: PMC10004115 DOI: 10.3390/ma16051854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The future belongs to biodegradable epoxies. In order to improve epoxy biodegradability, it is crucial to select suitable organic additives. The additives should be selected so as to (maximally) accelerate the decomposition of crosslinked epoxies under normal environmental conditions. However, naturally, such rapid decomposition should not occur within the normal (expected) service life of a product. Consequently, it is desirable that the newly modified epoxy should exhibit at least some of the mechanical properties of the original material. Epoxies can be modified with different additives (such as inorganics with different water uptake, multiwalled carbon nanotubes, and thermoplastics) that can increase their mechanical strength but does not lead to their biodegradability. In this work, we present several mixtures of epoxy resins together with organic additives based on cellulose derivatives and modified soya oil. These additives are environmentally friendly and should increase the epoxy's biodegradability on the one hand without deteriorating its mechanical properties on the other. This paper concentrates mainly on the question of the tensile strength of various mixtures. Herein, we present the results of uniaxial stretching tests for both modified and unmodified resin. Based on statistical analysis, two mixtures were selected for further studies, namely the investigation of durability properties.
Collapse
Affiliation(s)
- Agnieszka Derewonko
- Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Wojciech Fabianowski
- Military Institute of Chemistry and Radiation, gen. Antoniego Chruściela 105, 00-910 Warsaw, Poland
| | - Jerzy Siczek
- Military Institute of Chemistry and Radiation, gen. Antoniego Chruściela 105, 00-910 Warsaw, Poland
| |
Collapse
|