1
|
González-Feijoo R, Santás-Miguel V, Arenas-Lago D, Álvarez-Rodríguez E, Núñez-Delgado A, Arias-Estévez M, Pérez-Rodríguez P. Effectiveness of cork and pine bark powders as biosorbents for potentially toxic elements present in aqueous solution. ENVIRONMENTAL RESEARCH 2024; 250:118455. [PMID: 38367838 DOI: 10.1016/j.envres.2024.118455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Cork oak and pine bark, two of the most prolific byproducts of the European forestry sector, were assessed as biosorbents for eliminating potentially toxic elements (PTEs) from water-based solutions. Our research suggests that bioadsorption stands out as a viable and environmental eco-friendly technology, presenting a sustainable method for the extraction of PTEs from polluted water sources. This study aimed to evaluate and compare the efficiency of cork powder and pine bark powder as biosorbents. Specifically, the adsorption of Fe, Cu, Zn, Cd, Ni, Pb and Sn at equilibrium were studied through batch experiments by varying PTEs concentrations, pH, and ionic strength. Results from adsorption-desorption experiments demonstrate the remarkable capacity of both materials to retain the studied PTE. Cork powder and pine bark powder exhibited the maximum retention capacity for Fe and Cd, while they performed poorly for Pb and Sn, respectively. Nevertheless, pine bark showed a slightly lower retention capacity than cork. Increasing the pH resulted in cork showing the highest adsorption for Zn and the lowest for Sn, while for pine bark, Cd was the most adsorbed, and Sn was the least adsorbed, respectively. The highest adsorption of both materials occurred at pH 3.5-5, depending on the PTE tested. The ionic strength also influenced the adsorption of the various PTEs for both materials, with decreased adsorption as ionic strength increased. The findings suggest that both materials could be effective for capturing and eliminating the examined PTEs, albeit with different efficiencies. Remarkably, pine bark demonstrated superior adsorption capabilities, which were observed to vary based on the specific element and the experimental conditions. These findings contribute to elucidating the bio-adsorption potential of these natural materials, specifically their suitability in mitigating PTEs pollution, and favoring the recycling and revalorization of byproducts that might otherwise be considered residue.
Collapse
Affiliation(s)
- Rocío González-Feijoo
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, Ourense, 32004, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain
| | - Vanesa Santás-Miguel
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, Ourense, 32004, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain; Microbial Ecology, Department of Biology, Lund University, Ecology Building, 22362, Lund, Sweden
| | - Daniel Arenas-Lago
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, Ourense, 32004, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, Ourense, 32004, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain
| | - Paula Pérez-Rodríguez
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, Ourense, 32004, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
2
|
Yu F, Ji Y, Li Z, Li Y, Meng Y. Adsorption-desorption characteristics of typical heavy metal pollutants in submerged zone sediments: a case study of the Jialu section in Zhengzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96055-96074. [PMID: 37561307 DOI: 10.1007/s11356-023-29059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
In recent years, the accumulation ability of heavy metals in sediment has become a key indicator for sediment pollution prevention and control. The adsorption-desorption processes of typical heavy metal pollutants in sediments under different conditions were explored and relied in this article. In addition, different binary competitive adsorption systems were designed to study the competitive adsorption properties of heavy metal contaminants, The quasi-secondary kinetic model simulated the adsorption kinetic process. The sediment adsorption rates for heavy metals were (in descending order) Cu, Pb, Cd, Zn. The Elovich equation simulated the desorption kinetics process better, and the sediment desorption rates for heavy metals were (in descending order) Cd, Cu, Zn, Pb. The average free adsorption energy E of heavy metals was within the range of 8-16 kJ∙mol-1. After the removal of organic matter, the ability of the sediment to sequester heavy metals decreases, The binary competitive adsorption results showed that the presence of interfering ions had the greatest effect on Cd and the least effect on Pb. The adsorption and desorption of the four heavy metals by the sediments in the submerged zone increased with the increase of temperature, and the ratio of desorption to adsorption also increased therewith: the adsorptions of heavy metals by the sediments were all spontaneous processes (under heat absorption reactions). The presence of organic matter can increase the ability of the sediment to sequester Cd, Pb, Cu, and Zn. Additionally, heavy metals exhibited significant selective adsorption properties.
Collapse
Affiliation(s)
- Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
- Collaborative lnnovation Center for Efficient Utilization of Water Resources, Zhengzhou, 450046, China
| | - Yuekun Ji
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Zhiping Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
- Collaborative lnnovation Center for Efficient Utilization of Water Resources, Zhengzhou, 450046, China.
| | - Yangkun Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Yue Meng
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| |
Collapse
|