1
|
Wawrzyk A, Poskrobko J, Guzińska K, Kaźmierczak D, Papis A, Jastrzębiowska N, Uroda N, Szymankiewicz M, Zeljaś D, Wawrzyk-Bochenek I, Wilczyński S. Analysis of the Surface of Historic Fabric from the Auschwitz-Birkenau State Museum after Treatment with Ethanol Mist Used to Eliminate Microorganisms Harmful to Human Health. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2323. [PMID: 38793390 PMCID: PMC11122998 DOI: 10.3390/ma17102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
AIM the aim of the work was to present the changes occurring on the model and historical cotton surface of cotton resulting from disinfection with 90% ethanol mist. MATERIALS AND METHODS Samples of historical materials consisted of fabric elements from suitcases stored in A-BSM. A mist of 90% ethanol was applied for 15 s at a distance of 16 cm from the surface. The spectra of cotton samples before and after ethanol application were recorded using Fourier transform infrared spectroscopy (FTIR-ATR). Analyses of the surface layers were performed using X-ray photoelectron spectroscopy (XPS). RESULTS the decontamination performed did not show any significant differences in the chemical composition and surface structure of cotton before and after the use of 90% ethanol mist. CONCLUSIONS Ethanol mist, which eliminates microorganisms from the historical surface, does not cause significant changes to the surface of historical objects.
Collapse
Affiliation(s)
- Anna Wawrzyk
- Silesian Park of Medical Technology Kardio-Med Silesia in Zabrze, M. Curie Skłodowskiej 10C Str., 41-800 Zabrze, Poland
- Auschwitz-Birkenau State Museum, Więźniów Oświęcimia 20, 32-603 Oświęcim, Poland
| | - Janina Poskrobko
- The Department of Textile Conservation, The Metropolitan Museum of Art (The Met), 1000 Fifth Avenue, New York, NY 10028, USA;
| | - Krystyna Guzińska
- Lukasiewicz Research Network-Lodz Institute of Technology, M. Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Dorota Kaźmierczak
- Lukasiewicz Research Network-Lodz Institute of Technology, M. Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Aleksandra Papis
- Auschwitz-Birkenau State Museum, Więźniów Oświęcimia 20, 32-603 Oświęcim, Poland
| | - Nel Jastrzębiowska
- Auschwitz-Birkenau State Museum, Więźniów Oświęcimia 20, 32-603 Oświęcim, Poland
| | - Natalia Uroda
- Auschwitz-Birkenau State Museum, Więźniów Oświęcimia 20, 32-603 Oświęcim, Poland
| | - Maria Szymankiewicz
- Department of Microbiology, Prof. F. Łukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland
| | - Dagmara Zeljaś
- Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Iga Wawrzyk-Bochenek
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-205 Sosnowiec, Poland
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-205 Sosnowiec, Poland
| |
Collapse
|
2
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
3
|
Wawrzyk A, Dymel M, Guzińska K, Cywiński P, Papis A, Konka A, Wawrzyk-Bochenek I, Wilczyński S. Optimization of the Process of Eliminating Microorganisms Harmful to Human Health and Threatening Objects Isolated from Historical Materials from the Auschwitz-Birkenau State Museum in Poland (A-BSM) Collection with the Use of Ethanol in the Form of Mist. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2700. [PMID: 37048992 PMCID: PMC10096311 DOI: 10.3390/ma16072700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The aim of the study was to assess the biocidal effectiveness and the effect of 80% and 90% ethanol applied in the form of mist on the surface of textile materials from historical A-BSM objects. The microorganisms used for the tests, namely, Cladosporium cladosporioides, Aspergillus niger and Penicillium chrysogenum, were isolated from the surface of textile objects in the A-BSM. Bacillus subtilis, Staphylococcus aureus, Aspergillus flavus and Aspergillus niger were also used from the American Type Culture Collection (ATCC). Fabric samples were inoculated with microorganisms at a concentration of 105-106 CFU/ml. Ethanol in the form of mist was applied in concentrations of 80% and 90%. Airbrushes VL 0819 and VE 0707 were used for this purpose, where the pressure was 0.2 MPa and the PA HEAD VLH-5 nozzle with a tip of 1.05 mm in diameter was used. In order to achieve more effective disinfection after applying the ethanol mist, samples were stored in PE foil in the conditions of 21 °C ± 1 °C for 22 ± 1 h. After applying the ethanol mist, changes in the properties of the materials were assessed using scanning electron microscopy (SEM). The reduction in the number of microorganisms on modern cotton fabric after the use of ethanol in the form of mist at concentrations of 80% and 90% ranged from 93.27% to 99.91% for fungi and from 94.96% to 100% for bacteria, except for 74.24% for B. subtillis. On the historical fabric, after the time of application of 90% ethanol was shortened to 4 s, the microorganisms were reduced by over 99.93% and S. aureus was completely eliminated. After applying the tested disinfection technique, no changes in fiber morphology were observed on the surface of the model and historical cotton.
Collapse
Affiliation(s)
- Anna Wawrzyk
- Auschwitz-Birkenau State Museum, Więźniów Oświęcimia 20, 32-603 Oświęcim, Poland
- Silesian Park of Medical Technology Kardio-Med Silesia in Zabrze, M. Curie Skłodowskiej 10C Str., 41-800 Zabrze, Poland
| | - Marzena Dymel
- Lukasiewicz Research Network-Lodz Institute of Technology, M. Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Krystyna Guzińska
- Lukasiewicz Research Network-Lodz Institute of Technology, M. Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Piotr Cywiński
- Auschwitz-Birkenau State Museum, Więźniów Oświęcimia 20, 32-603 Oświęcim, Poland
| | - Aleksandra Papis
- Auschwitz-Birkenau State Museum, Więźniów Oświęcimia 20, 32-603 Oświęcim, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia in Zabrze, M. Curie Skłodowskiej 10C Str., 41-800 Zabrze, Poland
| | - Iga Wawrzyk-Bochenek
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-205 Sosnowiec, Poland
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-205 Sosnowiec, Poland
| |
Collapse
|
4
|
Evaluation of the Tooth Surface after Irradiation with Diode Laser Applied for Removal of Dental Microorganisms from Teeth of Patients with Gingivitis, Using X-ray Photoelectron (XPS) and Optical Profilometry (OP). J Clin Med 2022; 11:jcm11226840. [PMID: 36431317 PMCID: PMC9697199 DOI: 10.3390/jcm11226840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Gingivitis is accompanied by microorganisms, including pathogens, which must be eliminated to speed up the treatment of inflammation. Laser irradiation may be one of the safe methods for reducing tissue contamination on the tooth surface. The aim of the study was the assessment of the tooth surface in patients with gingivitis after the use of a diode laser to eliminate microorganisms living there. In the first stage of the research, microorganisms were isolated (Candida albicans, C. guilliermondii, Escherichia coli, Haemophilus parainfluenzae, Klebsiella oxytoca, Neisseria subflava, Rothia dentocariosa, Rothia mucilaginosa, Streptococcus pneumoniae) from three patients with gingivitis, their identification confirmed using the MALDI-TOF MS technique (matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry). Then, the irradiation process with a diode laser was optimized to a wavelength of 810 nm ± 10 nm in five variants to reduce microorganisms on the tooth. The tooth surface was analyzed by X-ray photoelectron spectroscopy (XPS) and optical profilometry (OP) before and after irradiation. 103 to 106 CFU were detected on a 0.4 cm2 tooth area. Nine types of bacteria and two types of fungi dominated among the microorganisms. The laser at the most effective biocidal dose of 25 W/15.000 Hz/10 µs, average = 3.84 W, with three uses after 15 s, increased the reduction of fungi from 57.97% to 93.80%, and bacteria from 30.67% to 100%. This dose also caused a decrease in the degree of oxidation and in the effect of smoothing on the treated surfaces.
Collapse
|