1
|
Skourti A, Giannoulia S, Daletou MK, Aggelopoulos CA. Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1298. [PMID: 39120403 PMCID: PMC11314139 DOI: 10.3390/nano14151298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The oxidation of multi-walled carbon nanotubes (MWCNTs) using cold plasma was investigated for their subsequent use as adsorbents for the removal of dyes from aqueous solutions. The properties of MWCNTs after plasma modification and their adsorption capacities were compared with pristine and chemically oxidized nanotubes. The modification process employed a reactor where plasma was generated through dielectric barrier discharges (DBD) powered by high-voltage nanosecond pulses. Various modification conditions were examined, such as processing time and pulse voltage amplitude. The degree of oxidation and the impact on the chemistry and structure of the nanotubes was investigated through various physicochemical and morphological characterization techniques (XPS, BET, TEM, etc.). Maximum oxidation (O/C = 0.09 from O/C = 0.02 for pristine MWCNTs) was achieved after 60 min of nanopulsed-DBD plasma treatment. Subsequently, the modified nanotubes were used as adsorbents for the removal of the dye methylene blue (MB) from water. The adsorption experiments examined the effects of contact time between the adsorbent and MB, as well as the initial dye concentration in water. The plasma-modified nanotubes exhibited high MB removal efficiency, with adsorption capacity proportional to the degree of oxidation. Notably, their adsorption capacity significantly increased compared to both pristine and chemically oxidized MWCNTs (~54% and ~9%, respectively). Finally, the kinetics and mechanism of the adsorption process were studied, with experimental data fitting well to the pseudo-second-order kinetic model and the Langmuir isotherm model. This study underscores the potential of plasma technology as a low-cost and environmentally friendly approach for material modification and water purification.
Collapse
Affiliation(s)
- Anastasia Skourti
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Laboratory of Advanced Materials and Electrochemical Energy Conversion Devices, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Stefania Giannoulia
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Maria K. Daletou
- Laboratory of Advanced Materials and Electrochemical Energy Conversion Devices, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Christos A. Aggelopoulos
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| |
Collapse
|
2
|
D'ors A, Sánchez-Fortún A, Cortés-Téllez AA, Fajardo C, Mengs G, Nande M, Martín C, Costa G, Martín M, Bartolomé MC, Sánchez-Fortún S. Adverse effects of iron-based nanoparticles on freshwater phytoplankton Scenedesmus armatus and Microcystis aeruginosa strains. CHEMOSPHERE 2023; 339:139710. [PMID: 37532199 DOI: 10.1016/j.chemosphere.2023.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Zero-valent nano-iron particles (nZVI) are increasingly present in freshwater aquatic environments due to their numerous applications in environmental remediation. However, despite the broad benefits associated with the use and development of nZVI nanoparticles, the potential risks of introducing them into the aquatic environment need to be considered. Special attention should be focused on primary producer organisms, the basal trophic level, whose impact affects the rest of the food web. Although there are numerous acute studies on the acute effects of these nanoparticles on photosynthetic primary producers, few studies focus on long-term exposures. The present study aimed at assessing the effects of nZVI on growth rate, photosynthesis activity, and reactive oxygen activity (ROS) on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa. Moreover, microcystin production was also evaluated. These parameters were assessed on both organisms singly exposed to 72 h-effective nZVI concentration for 10% maximal response for 28 days. The results showed that the cell growth rate of S. armatus was initially significantly altered and progressively reached control-like values at 28 days post-exposure, while M. aeruginosa did not show any significant difference concerning control values at any time. In both strains dark respiration (R) increased, unlike net photosynthesis (Pn), while gross photosynthesis (Pg) only slightly increased at 7 days of exposure and then became equal to control values at 28 days of exposure. The nZVI nanoparticles generated ROS progressively during the 28 days of exposure in both strains, although their formation was significantly higher on green algae than on cyanobacteria. These data can provide additional information to further investigate the potential risks of nZVI and ultimately help decision-makers make better informed decisions regarding the use of nZVI for environmental remediation.
Collapse
Affiliation(s)
- A D'ors
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A A Cortés-Téllez
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico
| | - C Fajardo
- Dpt. of Biomedicine and Biotechnology, Universidad de Alcalá (UAH), w/n San Diego Sq, 28801, Alcalá de Henares, Spain
| | - G Mengs
- Technical and R&D Department, Ecotoxilab SL, 10 Juan XXIII, 28550, Tielmes, Spain
| | - M Nande
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - C Martín
- Dpt. of Biotechnology-Plant Biology, Universidad Politécnica de Madrid (UPM), 3 Complutense Ave, 28040, Madrid, Spain
| | - G Costa
- Department of Animal Physiology, Faculty of Veterinary Sciences, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M Martín
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M C Bartolomé
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico.
| | - S Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Gul T, Khan I, Ahmad B, Ahmad S, Alsaiari AA, Almehmadi M, Abdulaziz O, Alsharif A, Khan I, Saeed K. Efficient photodegradation of methyl red dye by kaolin clay supported zinc oxide nanoparticles with their antibacterial and antioxidant activities. Heliyon 2023; 9:e16738. [PMID: 37313164 PMCID: PMC10258418 DOI: 10.1016/j.heliyon.2023.e16738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Kaolin clay-supported Zinc oxide (ZnO/KC) and ZnO NPs nanoparticles (NPs) were prepared by a chemical reduction process and used for the photodegradation of methyl red (MR) dye as a photocatalyst. Due to the interlayered porous structure of the KC, we achieved an extremely good association between ZnO NPs and KC. The product confirmation was conducted by Scanning electron microscopy (SEM), X-Ray diffraction (XRD), energy dispersive X-Ray (EDX), and Fourier transforms infrared (FTIR). SEM showed the irregular morphology of ZnO NPs, while ZnO/KC NCs were predominately round-shaped. Moreover, in both cases, NPs were present in both dispersed as well as agglomerated forms with an average particle size below 100 nm. The results acquired from photodegradation analyses show that ZnO NPs and ZnO/KC NCs degraded about 90 and 99% of MR dye respectively, under UV light in a short irradiation time of 10 min. The recovered and re-recovered ZnO NPs and ZnO/KC NCs also considerably photodegraded MR dye in an aqueous medium. The same NPs also exhibit promising bioactivities against two pathogenic bacteria, i.e., Citrobacter and Providencia. The antioxidant activity of ZnO/KC NCs reached to reasonable 70% compared to the 88% activity of the standard ascorbic acid.
Collapse
Affiliation(s)
- Tamanna Gul
- Department of Chemistry, Bacha Khan University, Charsadda, KP, Pakistan
| | - Idrees Khan
- Department of Chemistry, Bacha Khan University, Charsadda, KP, Pakistan
| | - Bashir Ahmad
- Centre of Biotechnology & Microbiology University of Peshawar, Peshawar, KP, Pakistan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KP, Pakistan
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, 18050, Pakistan
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ibrahim Khan
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, 06974 Seoul, South Korea
| | - Khalid Saeed
- Department of Chemistry, Bacha Khan University, Charsadda, KP, Pakistan
| |
Collapse
|