1
|
Suručić L, Janjić G, Marković B, Tadić T, Vuković Z, Nastasović A, Onjia A. Speciation of Hexavalent Chromium in Aqueous Solutions Using a Magnetic Silica-Coated Amino-Modified Glycidyl Methacrylate Polymer Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062233. [PMID: 36984113 PMCID: PMC10052201 DOI: 10.3390/ma16062233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 05/14/2023]
Abstract
A new magnetic amino-functionalized polymeric sorbent based on glycidyl methacrylate was synthesized and used in the separation of chromium Cr(VI) oxyanions sorption from aqueous solutions in a static batch system. The kinetic and isothermal parameters of the sorption process were determined. The experimental data were best fitted by a pseudo-second-order model with R2 = 0.994 and χ2 = 0.004. The sorption process of Cr(VI) removal by amino-functionalized sorbent was controlled by both intraparticle diffusion and liquid film diffusion. The equilibrium results showed that the sorption process is best described by the Freundlich model, followed closely by the Sips isotherm model, with a maximum sorption capacity of 64 mg/g. Quantum chemical modeling revealed that the sorption sites on the sorbent surface are fragments with diethylenetriamine and aminopropyl silane groups that coated the magnetic nanoparticles. The calculations showed that Cr(VI) oxyanions (Cr2O72-, CrO42- and HCrO4-) bind to both sorption sites, with diethylenetriamine centers slightly favored. The X-ray photoelectron spectroscopy (XPS) spectra demonstrate that the chromium bound to the sorbent in the form of Cr(III), indicating that the Cr(VI) can be converted on the surface of the sorbent to a less harmful form Cr(III) due to the sorbent's chemical composition.
Collapse
Affiliation(s)
- Ljiljana Suručić
- Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina
- Correspondence: (L.S.); (A.O.)
| | - Goran Janjić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Bojana Marković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Tamara Tadić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Zorica Vuković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Aleksandra Nastasović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: (L.S.); (A.O.)
| |
Collapse
|