1
|
Yu YM, Lu YP, Zhang T, Zheng YF, Liu YS, Xia DD. Biomaterials science and surface engineering strategies for dental peri-implantitis management. Mil Med Res 2024; 11:29. [PMID: 38741175 DOI: 10.1186/s40779-024-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.
Collapse
Affiliation(s)
- Ya-Meng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yu-Pu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yun-Song Liu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Dan-Dan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
2
|
Montanari M, Grande F, Lepidi L, Piana G, Catapano S. Rehabilitation with implant-supported overdentures in preteens patients with ectodermal dysplasia: A cohort study. Clin Implant Dent Relat Res 2023; 25:1187-1196. [PMID: 37608501 DOI: 10.1111/cid.13258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Hypohidrotic ectodermal dysplasia (HED) patients suffering of oligo-anodontia require early dental treatment to improve oral functions and reduce social impairment. The aim of this study was to evaluate the skeletal growth, implant and prosthetic survival rate, success, and complications after the rehabilitation with a maxillary denture and an implant-supported overdenture provided by a sliding bar in case of severe hypodontia/anodontia related to HED. MATERIALS AND METHODS This retrospective cohort study began in 2009. Nine patients over 7 years old with HED and associated oligo-anodontia who presented at the University of Bologna for dental treatment were included in the study. They were first treated with conventional dentures and then with a maxillary denture and an implant-supported overdenture with a sliding bar connected to two implants placed in the anterior mandible. The subjects treated were followed for 3-12 years. In each case, orthopanoramic and lateral cephalometric radiographic exam were taken before implant placement and annually after prosthetic load. Vertical and transverse dimensions of the mandible in the symphysis area at implant sites were taken on the lateral cephalometric radiography at the time of implant placement and after 5 years from the prosthetic loading to assess the presence or absence of an anterior mandibular growth. Biologic and mechanical complications were also recorded at every visit. RESULTS A mandibular vertical growth under the implant apex, at the implant neck, and a sagittal growth of the symphysis after 5 years from the prosthetic loading were observed and measured. Implant and prosthetic success and survival rates were 100% after 8.1 years (mean) follow-up period. No complications were reported except in one patient, where the repositioning of a retentive cap on the counter bar in the superstructure was necessary after 3 years from the prosthetic loading. CONCLUSIONS The present study suggests that the growth of the mandible near implant sites continues even after their positioning. Implants can be successfully placed and provide support for prosthetic rehabilitation in preteens patients with HED.
Collapse
Affiliation(s)
- Marco Montanari
- Department of Prosthodontics, University of Ferrara, Ferrara, Italy
| | - Francesco Grande
- Department of Prosthodontics, University of Ferrara, Ferrara, Italy
| | - Luca Lepidi
- Department of Prosthodontics, University of Ferrara, Ferrara, Italy
| | - Gabriela Piana
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Santo Catapano
- Department of Prosthodontics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Pera F, Carossa M, Bagnasco F, Crupi A, Ambrogio G, Isola G, Menini M, Pesce P. Comparison between Bone-Level and Tissue-Level Implants in Immediate-Loading Full-Arch Rehabilitations: A Retrospective Multi-Center 1-Year Follow-Up Study. PROSTHESIS 2023; 5:1301-1311. [DOI: 10.3390/prosthesis5040089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The objective of the present retrospective multi-center study was to analyze the outcomes of bone-level (BL) implants and tissue-level (TL) implants in immediate-loading full-arch rehabilitations. Patients who were previously rehabilitated with full-arch immediate-loading rehabilitations with either BL or TL implants were considered. Data regarding implant survival rate, marginal bone loss (MBL), peri-implant probing depth (PPD), plaque index (PI), and bleeding on probing (BOP) were recorded, and the 1-year follow-up data were statistically analyzed between the two groups. In total, 38 patients were evaluated for a total implant number of 156 (n = 80 TL implants and n = 76 BL implants). An implant survival rate of 97.37% was recoded for the BL group while an implant survival rate of 100% was noted for the TL group. A total MBL of 1.324 ± 0.64 mm was recorded for BL implants, while a total MBL of 1.194 ± 0.30 mm was recorded for TL implants. A statistically significant difference was highlighted regarding MBL at the mesial aspect (p = 0.01552) of the implants, with BL implants presenting with higher MBL. Within the range of acceptable healthy values, a statistically significant difference was also highlighted regarding BOP (p < 0.00001), with TL implants presenting higher values. No statistically significant difference (p > 0.05) was recorded for any of the other variables analyzed. Within the limitations of the present retrospective study, both TL and BL implants seem to provide good clinical outcomes after a 12-month observational period when employed in immediate-loading full-arch rehabilitation.
Collapse
Affiliation(s)
- Francesco Pera
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Massimo Carossa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Francesco Bagnasco
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Armando Crupi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Giulia Ambrogio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Gaetano Isola
- Unit of Periodontology, Department of General Surgery and Surgical-Medical Specialties, University of Catania, 95124 Catania, Italy
| | - Maria Menini
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
4
|
Pera F, Pesce P, Menini M, Fanelli F, Kim BC, Zhurakivska K, Mayer Y, Isola G, Cianciotta G, Crupi A, Ambrogio G, Scotti N, Carossa M. Immediate loading full-arch rehabilitation using transmucosal tissue-level implants with different variables associated: a one-year observational study. Minerva Dent Oral Sci 2023; 72:230-238. [PMID: 37194244 DOI: 10.23736/s2724-6329.23.04782-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND The aim of the present observational study was to investigate the application of transmucosal tissue-level implants in immediate loading full-arch rehabilitation with different variables associated. METHODS Patients needing a full-arch implant rehabilitation were recruited and rehabilitated with four transmucosal tissue level implants. Data related to implants' diameters and lengths, jaw distributions, and presence of angulated abutments were collected. The following outcomes were evaluated: survival rate, marginal bone loss (MBL), Plaque Index (PI), bleeding on probing (BoP), probing depth (PD). Descriptive statistical analysis was reported and univariate linear regression models were built to assess a significant correlation between MBL and the different implant related factors. RESULTS Twenty patients were rehabilitated for a total implant number of 80; 11 rehabilitations were performed on the maxilla, while 9 were performed on the mandible; 48 implants presented a 3.8 mm diameter and 32 implants presented a 4.25 mm diameter. Implants length varied between 10 to 15 mm; 40 tilted implants were connected to angulated abutment, while 40 straight implants were connected directly to the prostheses (no abutments). At the one year follow-up visit no implants failed resulting in an implant survival rate of 100%. The overall MBL was 1.19±0.30 mm. No statistically significant difference (P>0.05) was highlighted among any of the subgroups analyzed. CONCLUSIONS Despite different variables associated, tissue level implants seem to represent a valid option when applied in immediate loading full-arch rehabilitation. Further research and longer observational periods are encouraged to confirm the result.
Collapse
Affiliation(s)
- Francesco Pera
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Maria Menini
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Francesco Fanelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Byung-Chan Kim
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Yaniv Mayer
- School of Graduate Dentistry, Health Care Campus Rambam, Haifa, Israel
| | - Gaetano Isola
- School of Dentistry, Department of General Surgery and Surgical-Medical Specialties, University of Catania, Catania, Italy
| | - Giulia Cianciotta
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Armando Crupi
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giulia Ambrogio
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Nicola Scotti
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Massimo Carossa
- C.I.R. Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
5
|
Traver-Méndez V, Camps-Font O, Ventura F, Nicolau-Sansó MA, Subirà-Pifarré C, Figueiredo R, Valmaseda-Castellón E. In Vitro Characterization of an Anodized Surface of a Dental Implant Collar and Dental Abutment on Peri-Implant Cellular Response. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6012. [PMID: 37687706 PMCID: PMC10489139 DOI: 10.3390/ma16176012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The purpose of this paper was to determine the effect of anodization on the in vitro proliferation and adhesion of immortalized human keratinocytes (HaCats) and mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) in Titanium Grade 23 (Ti6Al4V ELI) discs and to describe the surface topography, roughness, and composition of dental implants (body and collar) and abutments submitted to an area-specific anodization process. HaCat cells and BM-MSCs were seeded onto discs with three different surface treatments: machined, area-specific anodization for abutments, and area-specific anodization for implant collars. Cell proliferation was assessed using a resazurin-based fluorescent dye on days 1, 3, and 7, while cell adhesion was examined using scanning electron microscopy (SEM). Surface topography, roughness, and composition were evaluated for six implant bodies with an anodized rough surface, six anodized implant smooth collars, and six anodized prosthetic abutments. Both HaCats and BM-MSCs showed increased viability over time (p < 0.001) with no statistically significant differences among the different surfaces (p = 0.447 HaCats and p = 0.631 BM-MSCs). SEM analysis revealed an enhanced presence and adhesion of HaCat cells on the anodized surface for the implant collars and an increased adhesion of BM-MSCs on both the anodized and machined surface abutments. The topography characteristics of the treated implants and abutments varied depending on the specific implant region. Chemical analysis confirmed the presence of oxygen, calcium, phosphorus, and sodium on the anodized surfaces. The area-specific anodization process can be utilized to create variable topography, increase the specific surface area, and introduce oxygen, calcium, phosphorus, and sodium to dental implants and abutments. While BM-MSCs and HaCat cells showed similar adhesion and proliferation on anodized and machined surfaces, a positive interaction between anodized Ti6Al4V ELI surfaces and these two cell lines present in the peri-implant mucosa was observed. Due to the limitations of the present study, further research is necessary to confirm these findings.
Collapse
Affiliation(s)
- Valeria Traver-Méndez
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
| | - Octavi Camps-Font
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
| | - Francesc Ventura
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Miquel Angel Nicolau-Sansó
- Adult Comprehensive Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Carles Subirà-Pifarré
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
- Adult Comprehensive Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Rui Figueiredo
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
| | - Eduard Valmaseda-Castellón
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (V.T.-M.); (R.F.); (E.V.-C.)
- IDIBELL Institute, 08907 L’Hospitalet de Llobregat, Spain;
| |
Collapse
|
6
|
Baus-Domínguez M, Maza-Solano S, Vázquez-Pachón C, Flores-Cerero M, Torres-Lagares D, Serrera-Figallo MÁ, Macías-García L. Behaviour of the Peri-Implant Soft Tissue with Different Rehabilitation Materials on Implants. Polymers (Basel) 2023; 15:3321. [PMID: 37571215 PMCID: PMC10422441 DOI: 10.3390/polym15153321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Mucointegration seems to gain interest when talking about success in the maintenance of dental implants. As we well know, collagen fibres cannot be inserted due to the lack of root structure on the implant surface, so the structural integration of peri-implant tissues that provide a firm seal around implants seems to be of interest when it comes to ensuring the survival of dental implants. To achieve a good epithelial barrier, the physicochemical characteristics of the surfaces of the restorative materials are of vital importance; therefore, the objective of this study is to analyse the histological behaviour of the peri-implant soft tissues in three different restorative materials. (2) Methods: Histological analysis of biopsied peri-implant keratinised mucosa, inflammatory epithelium and connective tissue in contact with a reinforced composite (BRILLIANT Crios), a cross-linked polymethylmethacrylate (TELIO CAD), and a hybrid ceramic (Vita Enamic), restored on a customised Atlantis-type abutment (Dentsply Sirona) between 60 and 180 days after restoration. (3) Results: A greater number of cells per mm2 of keratinised epithelium is observed in the reinforced composite, which could indicate greater surface roughness with greater inflammatory response. In this way, the greater number of lymphocytes and the lateral cellular composition of the inflammatory cells confirm the greater inflammatory activity towards that material. The best material to rehabilitate was hybrid ceramic, as it shows a better cellular response. (4) Conclusions: Knowing the limitations of the proposed study, despite the fact that greater inflammation is observed in the reinforced composite relative to the other materials studied, no statistically significant differences were found.
Collapse
Affiliation(s)
- María Baus-Domínguez
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Serafín Maza-Solano
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Celia Vázquez-Pachón
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Marta Flores-Cerero
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Daniel Torres-Lagares
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - María-Ángeles Serrera-Figallo
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Laura Macías-García
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez-Pizjuán S/N, 41009 Sevilla, Spain
| |
Collapse
|
7
|
Vilarrasa J, Àlvarez G, Soler-Ollé A, Gil J, Nart J, Blanc V. Bacterial Adhesion of TESPSA and Citric Acid on Different Titanium Surfaces Substrate Roughness: An In Vitro Study with a Multispecies Oral Biofilm Model. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4592. [PMID: 37444905 DOI: 10.3390/ma16134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
This in vitro study analyzed the influence of substrate roughness on biofilm adhesion and cellular viability over triethoxysilylpropyl succinic anhydride silane (TESPSA)- and citric acid (CA)-coated surfaces at 12 and 24 h, respectively. A multispecies biofilm composed of S. oralis, A. naslundii, V. parvula, F. nucleatum, P. intermedia, P. gingivalis, P. endodontalis and F. alocis was developed over titanium discs grouped depending on their roughness (low, medium, high) and antibacterial coating (low-TESPSA, medium-TESPSA, high-TESPSA, and CA). The biofilm was quantified by means of quantitative polymerase chain reaction (PCR) and viability PCR and assessed through confocal laser scanning microscope (CLSM). Quantitative PCR revealed no significant differences in bacterial adhesion and biofilm mortality. CA was the surface with the lowest bacterial counts and highest mortality at 12 and 24 h, respectively, while high harbored the highest amount of biofilm at 24 h. By CLSM, CA presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. A significantly greater volume of dead cells was found at 12 h in low-TESPSA compared to medium-TESPSA, while CA also presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. With regard to the live/dead ratio, low-TESPSA presented a significantly higher ratio at 12 h compared to medium-TESPSA and high-TESPSA. Similarly, CA exhibited a significantly higher live/dead ratio compared to medium-TESPSA and high-TESPSA at 12 h. This multispecies in vitro biofilm did not evidence clear antiadhesive and bactericidal differences between surfaces, although a tendency to reduce adhesion and increase antibacterial effect was observed in the low-TESPSA and CA.
Collapse
Affiliation(s)
- Javi Vilarrasa
- Department of Periodontology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, 08290 Cerdanyola del Vallès, Spain
| | - Agnès Soler-Ollé
- Department of Microbiology, DENTAID Research Center, 08290 Cerdanyola del Vallès, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallés, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Vanessa Blanc
- Department of Microbiology, DENTAID Research Center, 08290 Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Mendes TA, Vilhena L, Portugal J, Caramês J, Ramalho AL, Lopes LP. Wear of Titanium Implant Platforms with Different Abutment Connections and Abutment Materials: A Pilot Study. J Funct Biomater 2023; 14:jfb14040178. [PMID: 37103268 PMCID: PMC10146395 DOI: 10.3390/jfb14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
The most commonly used material in dental implants and their abutments is titanium. Zirconia is a more aesthetic alternative to titanium abutments; however, it is much harder. There are concerns that zirconia could damage the surface of the implant over time, especially in less stable connections. The aim was to evaluate the wear of implants with different platforms connected to titanium and zirconia abutments. A total of six implants were evaluated, two of each connection type: external hexagon, tri-channel, and conical connections (n = 2). Half of the implants were connected to zirconia abutments, and the other half to titanium abutments (n = 3). The implants were then cyclically loaded. The implant platforms were evaluated by digital superimposing micro CT files and calculating the area of the loss surface (wear). In all the implants, a statistically significant loss of the surface area (p = 0.028) was observed when comparing the area before and after cyclic loading. The average lost surface area was 0.38 mm2 with titanium abutments and 0.41 mm2 with zirconia abutments. The average lost surface area was 0.41 mm2 with the external hexagon, 0.38 mm2 with the tri-channel, and 0.40 mm2 with the conical connection. In conclusion, the cyclic loads induced implant wear. However, neither the type of abutment (p = 0.700) nor the connection (p = 0.718) influenced the amount of surface area lost.
Collapse
Affiliation(s)
- Teresa A Mendes
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Luis Vilhena
- Department of Mechanical Engineering, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), University of Coimbra, 3004-516 Coimbra, Portugal
| | - Jaime Portugal
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - João Caramês
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys), 1600-277 Lisbon, Portugal
| | - Amilcar L Ramalho
- Department of Mechanical Engineering, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), University of Coimbra, 3004-516 Coimbra, Portugal
| | - Luis P Lopes
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisbon, Portugal
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys), 1600-277 Lisbon, Portugal
| |
Collapse
|
9
|
Areid N, Riivari S, Abushahba F, Shahramian K, Närhi T. Influence of Surface Characteristics of TiO 2 Coatings on the Response of Gingival Cells: A Systematic Review of In Vitro Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2533. [PMID: 36984413 PMCID: PMC10056999 DOI: 10.3390/ma16062533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The soft tissue-implant interface requires the formation of epithelium and connective tissue seal to hinder microbial infiltration and prevent epithelial down growth. Nanoporous titanium dioxide (TiO2) surface coatings have shown good potential for promoting soft tissue attachment to implant surfaces. However, the impact of their surface properties on the biological response of gingival cells needs further investigation. This systematic review aimed to investigate the cellular behavior of gingival cells on TiO2-implant abutment coatings based on in vitro studies. The review was performed to answer the question: "How does the surface characteristic of TiO2 coatings influence the gingival cell response in in vitro studies?". A search in MEDLINE/PubMed and the web of science databases from 1990 to 2022 was performed using keywords. A quality assessment of the studies selected was performed using the SciRAP method. A total of 11 publications were selected from the 289 studies that fulfilled the inclusion criteria. The mean reporting and methodologic quality SciRAP scores were 82.7 ± 6.4/100 and 87 ± 4.2/100, respectively. Within the limitations of this in vitro systematic review, it can be concluded that the TiO2 coatings with smooth nano-structured surface topography and good wettability improve gingival cell response compared to non-coated surfaces.
Collapse
Affiliation(s)
- Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Khalil Shahramian
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
- Turku Clinical Biomaterials Center (TCBC), University of Turku, FI-20014 Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
- Turku Clinical Biomaterials Center (TCBC), University of Turku, FI-20014 Turku, Finland
- Oral Health Care, Wellbeing services county of Southwest Finland, P.O. Box 52, FIN-20521 Turku, Finland
| |
Collapse
|