1
|
Roman AM, Cimpoeșu R, Pricop B, Cazacu MM, Zegan G, Istrate B, Cocean A, Chelariu R, Moscu M, Bădărău G, Cimpoeșu N, Ivănescu MC. Investigations on the Degradation Behavior of Processed FeMnSi-xCu Shape Memory Alloys. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:330. [PMID: 38392703 PMCID: PMC10893035 DOI: 10.3390/nano14040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
A new functional Fe-30Mn-5Si-xCu (x = 1.5 and 2 wt%) biomaterial was obtained from the levitation induction melting process and evaluated as a biodegradable material. The degradation characteristics were assessed in vitro using immersion tests in simulated body fluid (SBF) at 37 ± 1 °C, evaluating mass loss, pH variation that occurred in the solution, open circuit potential (OCP), linear and cyclic potentiometry (LP and CP), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and nano-FTIR. To obtain plates as samples, the cast materials were thermo-mechanically processed by hot rolling. Dynamic mechanical analysis (DMA) was employed to evaluate the thermal properties of the smart material. Atomic force microscopy (AFM) was used to show the nanometric and microstructural changes during the hot rolling process and DMA solicitations. The type of corrosion identified was generalized corrosion, and over the first 3-5 days, an increase in mass was observed, caused by the compounds formed at the metal-solution interface. The formed compounds were identified mainly as oxides that passed into the immersion liquid. The degradation rate (DR) was obtained as a function of mass loss, sample surface area and immersion duration. The dynamic mechanical behavior and dimensions of the sample were evaluated after 14 days of immersion. The nanocompounds found on the surface after atmospheric corrosion and immersion in SBF were investigated with the Neaspec system using the nano-FTIR technique.
Collapse
Affiliation(s)
- Ana-Maria Roman
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 Dimitrie Mangeron Blvd, 700050 Iasi, Romania; (A.-M.R.); (R.C.); (B.P.); (R.C.); (G.B.)
| | - Ramona Cimpoeșu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 Dimitrie Mangeron Blvd, 700050 Iasi, Romania; (A.-M.R.); (R.C.); (B.P.); (R.C.); (G.B.)
| | - Bogdan Pricop
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 Dimitrie Mangeron Blvd, 700050 Iasi, Romania; (A.-M.R.); (R.C.); (B.P.); (R.C.); (G.B.)
| | - Marius Mihai Cazacu
- Physics Department, “Gheorghe Asachi” Technical University of Iasi, 59A Dimitrie Mangeron Blvd, 700050 Iasi, Romania;
| | - Georgeta Zegan
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.M.); (M.C.I.)
| | - Bogdan Istrate
- Faculty of Mechanical Engineering, “Gheorghe Asachi” Technical University of Iasi, 43 Dimitrie Mangeron Blvd, 700050 Iasi, Romania;
| | - Alexandru Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University, 11 Carol I Blvd, 700506 Iasi, Romania;
- Laboratory of Applied Meteorology and Climatology, A Building, Physics, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Romeu Chelariu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 Dimitrie Mangeron Blvd, 700050 Iasi, Romania; (A.-M.R.); (R.C.); (B.P.); (R.C.); (G.B.)
| | - Mihaela Moscu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.M.); (M.C.I.)
| | - Gheorghe Bădărău
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 Dimitrie Mangeron Blvd, 700050 Iasi, Romania; (A.-M.R.); (R.C.); (B.P.); (R.C.); (G.B.)
| | - Nicanor Cimpoeșu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 Dimitrie Mangeron Blvd, 700050 Iasi, Romania; (A.-M.R.); (R.C.); (B.P.); (R.C.); (G.B.)
| | - Mircea Cătălin Ivănescu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.M.); (M.C.I.)
| |
Collapse
|
2
|
Hassan N, Krieg T, Zinser M, Schröder K, Kröger N. An Overview of Scaffolds and Biomaterials for Skin Expansion and Soft Tissue Regeneration: Insights on Zinc and Magnesium as New Potential Key Elements. Polymers (Basel) 2023; 15:3854. [PMID: 37835903 PMCID: PMC10575381 DOI: 10.3390/polym15193854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only be required temporarily to aid in the healing process of diseased or injured tissues and tissue expansion. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Ongoing research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. This review provides an overview of the physiological function and significance for human health of Mg and Zn and their usage as implants in tissue regeneration using tissue scaffolds. The scaffold qualities, such as biodegradation, mechanical characteristics, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50923 Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne, Kerpener Strasse 62, 50931 Cologne, Germany
| | - Kai Schröder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|