1
|
Mattu NK, Singh K. Crystallization effect on structural, mechanical and cytotoxic properties of bioglasses synthesized using conventional and biowaste as resources. MATERIALS CHEMISTRY AND PHYSICS 2025; 331:130157. [DOI: 10.1016/j.matchemphys.2024.130157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Sarmast Sh M, Dayang Radiah AB, Hoey DA, Abdullah N, Zainuddin HS, Kamarudin S. The structural, mechanical, and biological variation of silica bioglasses obtained by different sintering temperatures. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2024; 112:289-310. [DOI: 10.1007/s10971-024-06480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/02/2024] [Indexed: 01/05/2025]
|
3
|
Szczodra A, Houaoui A, Agniel R, Sicard L, Miettinen S, Massera J, Gorin C. Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regeneration. Acta Biomater 2024; 186:489-506. [PMID: 39098444 DOI: 10.1016/j.actbio.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Commercially available bioactive glasses (BAGs) are exclusively used in powder form, due to their tendency to crystallize. Silicate BAG 1393 was developed to allow fiber drawing and scaffold sintering, but its slow degradation limits its potential. To enable scaffold manufacturing while maintaining glass dissolution rate close to that of commercially available BAGs, the borosilicate glass 1393B20 was developed. This study investigates the potential of 1393B20 scaffolds to support bone regeneration and mineralization in vitro and in vivo, in comparison to silicate 1393. Both scaffolds supported human adipose stem cells proliferation, either in direct contact for the 1393, or mainly around for the 1393B20. Similarly, both BAGs induced osteogenesis and angiogenesis in vitro, with a better pro-angiogenic influence of the 1393B20. In addition, these scaffolds supported bone regeneration and osteoclast/osteoblast activity in vivo in critical-sized rat calvarial defect. Nevertheless, mineralization and collagen formation were significantly enhanced for the 1393B20, at 3-months post-implantation, assigned to faster and more complete dissolution of the scaffolds. Thus, 1393B20 demonstrates greater promise for bone tissue engineering certainly due to its time-controlled release of boron and silicon. STATEMENT OF SIGNIFICANCE: Bioactive glasses (BAGs) show great promise in bone tissue engineering as they effectively bond with bone tissue, fostering integration and regeneration. Silicate BAG 1393 was developed to allow fiber drawing and scaffold sintering, but its slow degradation limits its potential. To enable scaffold manufacturing while maintaining glass dissolution rate close to that of commercially available BAGs, the borosilicate glass 1393B20 was developed. Both BAGs induced osteogenesis and angiogenesis in vitro, with a better pro-angiogenic influence of the 1393B20. The presence of boron in the 1393B20 enhanced mineralization and collagen formation in vivo compared to 1393, probably due to its faster dissolution rate. Here, 1393B20 demonstrated greater promise for bone tissue engineering compared to the well-known 1393 BAG.
Collapse
Affiliation(s)
- Agata Szczodra
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Amel Houaoui
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland; CY Cergy Paris Université, Biomaterials for Health group, ERRMECe, Neuville sur Oise, France
| | - Rémy Agniel
- CY Cergy Paris Université, Biomaterials for Health group, ERRMECe, Neuville sur Oise, France
| | - Ludovic Sicard
- Laboratory URP2496 Orofacial Pathologies, Imaging and Biotherapies, Faculty of Odontology, Université Paris Cité, Montrouge, France; Oral Medicine Service, Prosthetics Department, AP-HP/GH Nord, Paris, France
| | - Susanna Miettinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland; Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Jonathan Massera
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Caroline Gorin
- Laboratory URP2496 Orofacial Pathologies, Imaging and Biotherapies, Faculty of Odontology, Université Paris Cité, Montrouge, France; Oral Medicine Service, Prosthetics Department, AP-HP/GH Nord, Paris, France.
| |
Collapse
|
4
|
Kwon JW, Lee YH, Lee BH, Kim JH, Suk KS. Clinical and radiological outcomes of non-window-type bioactive glass-ceramic cage in single-level ACDF versus PEEK cage filled with autologous bone. Sci Rep 2024; 14:4035. [PMID: 38369553 PMCID: PMC10874951 DOI: 10.1038/s41598-024-54786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/16/2024] [Indexed: 02/20/2024] Open
Abstract
Bioactive glass-ceramic (BGC) cage is a substitute for polyether ether ketone (PEEK) cages in anterior cervical discectomy and fusion (ACDF). Only a few comparative studies exist using PEEK and non-window-type BGC cages (CaO-SiO2-P2O5-B2O3) in single-level ACDF. This study compared PEEK cages filled with autologous iliac bone grafts and BGC cages regarding clinical safety and effectiveness. A retrospective case series was performed on 40 patients who underwent single-level ACDF between October 2020 and July 2021 by a single orthopedic spine surgeon. The spacers used in each ACDF were a PEEK cage with a void filled with an autologous iliac bone graft and a non-window-type BGC cage in 20 cases. The grafts were compared pre-operatively and post-operatively at 6 weeks and 3, 6, and 12 months. Post-operative complications were investigated in each group. Clinical outcome was measured, including Visual Analog Scale (VAS) scores of neck and arm pains, Japanese Orthopedic Association score (JOA), and Neck Disability Index (NDI). Dynamic lateral radiographs were used to assess the inter-spinous motion (ISM) between the fusion segment and subsidence. The fusion status was evaluated using a computed tomography (CT) scan. Overall, 39 patients (19 and 20 patients in the PEEK and BGC groups, respectively) were recruited. Eighteen (94.7%) and 19 (95.0%) patients in the PEEK and BGC groups, respectively, were fused 12 months post-operatively, as assessed by ISM in dynamic lateral radiograph and bone bridging formation proven in CT scan. The PEEK and BGC groups showed substantial improvement in neck and arm VAS, JOA, and NDI scores. No substantial difference was found in clinical and radiological outcomes between the PEEK and BGC groups. However, the operation time was considerably shorter in the BGC group than in the PEEK group. In conclusion, a non-window-type BCG cage is a feasible substitute for a PEEK cage with an autologous iliac bone graft in single-level ACDF.
Collapse
Affiliation(s)
- Ji-Won Kwon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Republic of Korea
| | - Yong Ho Lee
- Department of Orthopedic Surgery, Yonsei Baro-Chuk Hospital, Seoul, Republic of Korea
| | - Byung Ho Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Republic of Korea
| | - Jae Hong Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Republic of Korea
| | - Kyung Soo Suk
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Eonju-ro 63-gil, Gangnam-gu, Seoul, 06229, Republic of Korea.
| |
Collapse
|