1
|
Miao L, Wei Y, Lu X, Jiang M, Liu Y, Li P, Ren Y, Zhang H, Chen W, Han B, Lu W. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv Drug Deliv Rev 2024; 204:115131. [PMID: 37977338 DOI: 10.1016/j.addr.2023.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The cell membrane serves as a barrier against the free entry of foreign substances into the cell. Limited by factors such as solubility and targeting, it is difficult for some drugs to pass through the cell membrane barrier and exert the expected therapeutic effect. Two-dimensional nanomaterial (2D NM) has the advantages of high drug loading capacity, flexible modification, and multimodal combination therapy, making them a novel drug delivery vehicle for drug membrane attachment and intracellular transport. By modulating the surface properties of nanocarriers, it is capable of carrying drugs to break through the cell membrane barrier and achieve precise treatment. In this review, we review the classification of various common 2D NMs, the primary parameters affecting their adhesion to cell membranes, and the uptake mechanisms of intracellular transport. Furthermore, we discuss the therapeutic potential of 2D NMs for several major disorders. We anticipate this review will deepen researchers' understanding of the interaction of 2D NM drug carriers with cell membrane barriers, and provide insights for the subsequent development of novel intelligent nanomaterials capable of intracellular transport.
Collapse
Affiliation(s)
- Li Miao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yaoyao Wei
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xue Lu
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Min Jiang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China; State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Yang C, Hu A, Dai Q, Yang Q, Hou R, Liu Z. Study on the Performance of Ni-MoS 2 Catalysts with Different MoS 2 Structures for Dibenzothiophene Hydrodesulfurization. ACS OMEGA 2023; 8:41182-41193. [PMID: 37970013 PMCID: PMC10634193 DOI: 10.1021/acsomega.3c04059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Hydrodesulfurization (HDS) is an important process for the production of clean fuel oil, and the development of a new environmentally friendly, low-cost sulfided catalyst is key research in hydrogenation technology. Herein, commercial bulk MoS2 and NiCO3·2NiOH2·4H2O were first hydrothermally treated and then calcined in a H2 or N2 atmosphere to obtain Ni-MoS2 HDS catalysts with different structures. Mechanisms of hydrothermal treatment and calcination on Ni-MoS2 catalyst structures were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of Ni-MoS2 catalysts was evaluated by the HDS reaction of dibenzothiophene (DBT) on a fixed bed reactor, and the structure-activity relationship between the structures of the Ni-MoS2 catalyst and the HDS of DBT was discussed. The results showed that the lateral size, the number of stacked layers, and the S/Mo atomic ratio of MoS2 in the catalyst decreased and then increased with the increase of the hydrothermal treatment temperature, reaching the minimum at the hydrothermal treatment temperature of 150 °C, i.e., the lateral size of MoS2 in the catalyst was 20-36 nm, the number of stacked layers of MoS2 was 5.4, and the S/Mo ratio in the catalyst was 1.80. In addition, the effects of different calcination temperatures and calcination atmospheres on the catalyst structures were investigated at the optimum hydrothermal treatment temperature. The Ni-Mo-S and NixSy ratios of the catalysts increased and then decreased with the increasing calcination temperature under a H2 atmosphere, reaching a maximum at a calcination temperature of 400 °C. Therefore, DBT exhibited the best HDS activity over the H-NiMo-150-400 catalyst, and the desulfurization rate of DBT reached 94.7% at a reaction temperature of 320 °C.
Collapse
Affiliation(s)
- Chuangchuang Yang
- SINOPEC Research Institute
of Petroleum Processing Co., Ltd., 18 Xue Yuan Road, Beijing 100083, P. R. China
| | - Anpeng Hu
- SINOPEC Research Institute
of Petroleum Processing Co., Ltd., 18 Xue Yuan Road, Beijing 100083, P. R. China
| | - Qiaoling Dai
- SINOPEC Research Institute
of Petroleum Processing Co., Ltd., 18 Xue Yuan Road, Beijing 100083, P. R. China
| | - Qinghe Yang
- SINOPEC Research Institute
of Petroleum Processing Co., Ltd., 18 Xue Yuan Road, Beijing 100083, P. R. China
| | - Ranran Hou
- SINOPEC Research Institute
of Petroleum Processing Co., Ltd., 18 Xue Yuan Road, Beijing 100083, P. R. China
| | - Zhiwei Liu
- SINOPEC Research Institute
of Petroleum Processing Co., Ltd., 18 Xue Yuan Road, Beijing 100083, P. R. China
| |
Collapse
|
3
|
Guzmán HJ, Vitale G, Carbognani-Ortega L, Scott CE, Pereira-Almao P. Molybdenum sulfide nanoparticles prepared using starch as capping agent. Redispersion and activity in Athabasca Bitumen hydrotreating. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Ryaboshapka D, Afanasiev P. Carbon nitride used as a reactive template to prepare mesoporous molybdenum sulfide and nitride. RSC Adv 2021; 11:21678-21684. [PMID: 35478828 PMCID: PMC9034131 DOI: 10.1039/d1ra03657b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon nitride C3N4 has been used as a sacrificial template to prepare inorganic materials with hierarchical pore structure. C3N4 impregnated with ammonium heptamolybdate was treated in reactive gas mixtures (H2S/H2 or NH3/H2). This approach allowed mesoporous molybdenum sulfide and molybdenum nitride materials to be obtained that replicate the morphology of the C3N4 template. Advantageous catalytic properties have been demonstrated in the thiophene hydrodesulfurization (HDS) and electrochemical hydrogen evolution reaction (HER). The highest rates in both reactions were observed for partially sulfidized Mo2N solid.
Collapse
Affiliation(s)
- Daria Ryaboshapka
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS, UMR5256, IRCELYON F-69626 Villeurbanne France
| | - Pavel Afanasiev
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS, UMR5256, IRCELYON F-69626 Villeurbanne France
| |
Collapse
|
5
|
Modified molybdenum disulfide induced beta polymorph phase transition in Polyvinylidene fluoride. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Influence of Pluronic® P123 Addition in the Synthesis of Bulk Ni Promoted MoS2 Catalyst. Application to the Selective Hydrodesulfurization of Sulfur Model Molecules Representative of FCC Gasoline. Catalysts 2019. [DOI: 10.3390/catal9100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A way to improve hydrotreatment processes is to enhance the intrinsic activity of Ni or Co promoted MoS2 catalysts that are commonly used in such reactions. The aim of this work was to investigate the impact of the presence of Pluronic® P123 as a structuring agent during the synthesis of Ni promoted MoS2 catalysts (named NiMoS) in water at room temperature. A series of analyses, i.e., X-ray diffraction (XRD), chemical analysis, inductively coupled plasma mass spectrometry (ICP-MS), nitrogen adsorption-desorption isotherms, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), helped in characterizing the NiMoS-P123 and NiMoS catalysts, the latter being prepared in the absence of polymer. Both compounds contained MoS2 phase (~85 atomic% considering Mo atoms), a similar amount of mixed Ni-Mo-S phase (40–50% considering Ni) and some amount of NiS and Ni-oxidized impurity phases. The main differences between the two catalysts were a much larger specific surface area (126 m2·g−1 instead of 31 m²·g−1) and a better dispersion of the active phase as shown by the lower slab stacking (2.7 instead of 4.8) for NiMoS-P123, and the presence of C in NiMoS-P123 (9.4 wt.% instead of 0.6 wt.%), indicating an incomplete decomposition of the polymer during thermal treatment. Thanks to its larger specific surface area and lower slab stacking and therefore modification of active Mo site properties, the compound prepared in the presence of Pluronic® P123 exhibits a strong increase of the catalytic activity expressed per Mo atom for the transformation of 3-methylthiophene. Such improvement in catalytic activity was not observed for the transformation of benzothiophene likely due to poisonous residual carbon which results from the presence of Pluronic® P123 during the synthesis.
Collapse
|
7
|
Impact of surface-modified molybdenum disulphide on crystallization, thermal and mechanical properties of polyvinylidene fluoride. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02765-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Jin W, Fu Y, Cai W. In situ growth of CuS decorated graphene oxide-multiwalled carbon nanotubes for ultrasensitive H2O2 detection in alkaline solution. NEW J CHEM 2019. [DOI: 10.1039/c8nj06134c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hybrid nanomaterial composed of nanoparticles, nanotubes and nanosheets for electrochemical H2O2 detection.
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
| | - Yanqiu Fu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| |
Collapse
|
9
|
Song W, Yan J, Ji H. Tribological Study of the SOCNTs@MoS2 Composite as a Lubricant Additive: Synergistic Effect. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00740] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Song
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jincan Yan
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Movement of new direction from conjugated polymer to semiconductor composite polymer nanofiber. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
In the past few years, there was a tremendous growth in conjugated polymer nanofibers via design of novel conjugated polymers with inorganic materials. Synthetic routes to these conjugated polymers involve new, mild polymerization techniques, which enable the formation of well-defined polymer architectures. This review provides interest in the development of novel (semi) conducting polymers, which combine both organic and inorganic blocks in one framework. Due to their ability to act as chemosensors or to detect various chemical species in environmental and biological systems, fluorescent conjugated polymers have gained great interest. Nanofibers of metal oxides and sulfides are particularly interesting in both their way of applications and fundamental research. These conjugated nanofibers operated for many applications in organic electronics, optoelectronics, and sensors. Synthesis of electrospun fibers by electrospinning technique discussed in this review is a simple method that forms conjugated polymer nanofibers. This review provides the basics of the technique and its recent advances in the formation of highly conducting and high-mobility polymer fibers towards their adoption in electronic application.
Collapse
|
11
|
AlMarzooqi SH, Katsiotis MS, Alhassan SM. Hybrid Porous Molybdenum Disulfide Monolith for Liquid Removal of Dibenzothiophene. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Saeed M. Alhassan
- Department
of Chemical Engineering, The Petroleum Institute, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Sofer Z, Sedmidubský D, Luxa J, Bouša D, Huber Š, Lazar P, Veselý M, Pumera M. Universal Method for Large-Scale Synthesis of Layered Transition Metal Dichalcogenides. Chemistry 2017; 23:10177-10186. [DOI: 10.1002/chem.201701628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Zdeněk Sofer
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - David Sedmidubský
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Jan Luxa
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Daniel Bouša
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Štěpán Huber
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacký University Olomouc; tř. 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Martin Veselý
- Department of Organic Technology; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
13
|
Anithaa A, Asokan K, Sekar C. Voltammetric determination of epinephrine and xanthine based on sodium dodecyl sulphate assisted tungsten trioxide nanoparticles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Mbese JZ, Ajibade PA. Homonuclear tris-dithiocarbamato ruthenium(III) complexes as single-molecule precursors for the synthesis of ruthenium(III) sulfide nanoparticles. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1262373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Johannes Z. Mbese
- Department of Chemistry, University of Fort Hare, Alice, South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of Fort Hare, Alice, South Africa
| |
Collapse
|
15
|
Kannan PK, Late DJ, Morgan H, Rout CS. Recent developments in 2D layered inorganic nanomaterials for sensing. NANOSCALE 2015. [PMID: 26204797 DOI: 10.1039/c5nr03633j] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
Collapse
|
16
|
Wu J, Nie G, Xu J, He J, Xu Q, Zhang Z. Structural instability and mechanical properties of MoS2toroidal nanostructures. Phys Chem Chem Phys 2015; 17:32425-35. [DOI: 10.1039/c5cp05435d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Classic molecular dynamics (MD) simulation of hypothetical MoS2NT nanorings and their woven hierarchical structures shows a strong dimension-dependent structural stability, and reveals that the hierarchical structures with 4-in-1 weaves exhibit high tensile strength and Young's modulus.
Collapse
Affiliation(s)
- Jianyang Wu
- Research Institute for Biomimetics and Soft Matter
- Department of Physics
- Xiamen University
- Xiamen
- China
| | - Gaosheng Nie
- Department of Application Engineering
- Jiangxi Normal College
- Yingtan
- China
| | - Jun Xu
- Research Institute for Biomimetics and Soft Matter
- Department of Physics
- Xiamen University
- Xiamen
- China
| | - Jianying He
- NTNU Nanomechanical Lab
- Department of Structural Engineering
- Norwegian University of Science and Technology (NTNU)
- Trondheim
- Norway
| | - Qingchi Xu
- Research Institute for Biomimetics and Soft Matter
- Department of Physics
- Xiamen University
- Xiamen
- China
| | - Zhiliang Zhang
- NTNU Nanomechanical Lab
- Department of Structural Engineering
- Norwegian University of Science and Technology (NTNU)
- Trondheim
- Norway
| |
Collapse
|
17
|
Song D, Li M, Jiang Y, Chen Z, Bai F, Li Y, Jiang B. Facile fabrication of MoS2/PEDOT–PSS composites as low-cost and efficient counter electrodes for dye-sensitized solar cells. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Li Y, Hu Y, Zhang H, Shen Y, Xie A. Controlled synthesis of bionic microstructure PbS crystals by mixed cationic/anionic surfactants. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2013. [DOI: 10.1134/s0036024413070406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Osim W, Stojanovic A, Akbarzadeh J, Peterlik H, Binder WH. Surface modification of MoS2 nanoparticles with ionic liquid–ligands: towards highly dispersed nanoparticles. Chem Commun (Camb) 2013; 49:9311-3. [DOI: 10.1039/c3cc45305g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Bellussi G, Rispoli G, Molinari D, Landoni A, Pollesel P, Panariti N, Millini R, Montanari E. The role of MoS2nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates. Catal Sci Technol 2013. [DOI: 10.1039/c2cy20448g] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Nan F, Song C, Zhang J, Hui R, Chen J, Fairbridge C, Botton GA. STEM HAADF Tomography of Molybdenum Disulfide with Mesoporous Structure. ChemCatChem 2011. [DOI: 10.1002/cctc.201000403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|