1
|
Kret P, Bodzon-Kulakowska A, Drabik A, Ner-Kluza J, Suder P, Smoluch M. Mass Spectrometry Imaging of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6343. [PMID: 37763619 PMCID: PMC10534324 DOI: 10.3390/ma16186343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The science related to biomaterials and tissue engineering accounts for a growing part of our knowledge. Surface modifications of biomaterials, their performance in vitro, and the interaction between them and surrounding tissues are gaining more and more attention. It is because we are interested in finding sophisticated materials that help us to treat or mitigate different disorders. Therefore, efficient methods for surface analysis are needed. Several methods are routinely applied to characterize the physical and chemical properties of the biomaterial surface. Mass Spectrometry Imaging (MSI) techniques are able to measure the information about molecular composition simultaneously from biomaterial and adjacent tissue. That is why it can answer the questions connected with biomaterial characteristics and their biological influence. Moreover, this kind of analysis does not demand any antibodies or dyes that may influence the studied items. It means that we can correlate surface chemistry with a biological response without any modification that could distort the image. In our review, we presented examples of biomaterials analyzed by MSI techniques to indicate the utility of SIMS, MALDI, and DESI-three major ones in the field of biomaterials applications. Examples include biomaterials used to treat vascular system diseases, bone implants with the effects of implanted material on adjacent tissues, nanofibers and membranes monitored by mass spectrometry-related techniques, analyses of drug-eluting long-acting parenteral (LAPs) implants and microspheres where MSI serves as a quality control system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.K.); (A.B.-K.); (A.D.); (J.N.-K.); (P.S.)
| |
Collapse
|
2
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
3
|
|
4
|
Wesén E, Gallud A, Paul A, Lindberg DJ, Malmberg P, Esbjörner EK. Cell surface proteoglycan-mediated uptake and accumulation of the Alzheimer's disease peptide Aβ(1-42). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2204-2214. [PMID: 30409516 DOI: 10.1016/j.bbamem.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/30/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023]
Abstract
Proteoglycans (PGs) have been found in Alzheimer's disease amyloid-β (Aβ) plaques and their glycosaminoglycan chains reportedly influence Aβ aggregation, neurotoxicity and intracellular accumulation in cell and animal models, but their exact pathophysiological role(s) remain unclear. We have studied the cellular uptake of fluorescently labelled Aβ(1-42) and Aβ(1-40) peptides in normal CHO cells (K1) and the mutant cell line (pgsA-745) which lacks all protein-attached heparan and chondroitin sulfate chains. After 24 h of incubation, CHO-K1 accumulates more Aβ(1-42) and Aβ(1-40) compared with CHO-pgsA-745, consistent with the suggested role of PGs in Aβ uptake. However, after short incubation times (≤3 h) there was no difference; moreover, the time evolution of Aβ(1-42) accumulation in CHO-K1 followed an unusual sigmoidal-like trend, indicating a possible involvement of PG-mediated peptide aggregation in Aβ endocytosis. Neither Aβ(1-42) nor Aβ(1-40) could stimulate uptake of a 10 kDa dextran (a general endocytosis marker) suggesting that Aβ-induced upregulation of endocytosis does not occur. CHO-K1 cells contained a higher number of Aβ(1-42)-positive vesicles, but the intensity difference per vesicle was only marginal suggesting that the superior accumulation of Aβ(1-42) stems from a higher number of endocytic events. FRET imaging support that intracellular Aβ(1-42) is aggregated in both cell types. We also report that CHO-pgsA-745 cells perform less endocytosis than CHO-K1 and, albeit this does not explain their difference in Aβ internalisation, we discuss a general method for data compensation. Altogether, this study contributes new insights into the mechanisms of PG-mediated Aβ uptake that may be relevant for our understanding of their role in AD pathology.
Collapse
Affiliation(s)
- Emelie Wesén
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Audrey Gallud
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Alexandra Paul
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - David J Lindberg
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Per Malmberg
- Division of Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| |
Collapse
|
5
|
Wang B, Anzai JI. Recent Progress in Lectin-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2015; 8:8590-8607. [PMID: 28793731 PMCID: PMC5458863 DOI: 10.3390/ma8125478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A) is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
|
7
|
Graham DJ, Castner DG. Multivariate analysis of ToF-SIMS data from multicomponent systems: the why, when, and how. Biointerphases 2012; 7:49. [PMID: 22893234 PMCID: PMC3801192 DOI: 10.1007/s13758-012-0049-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/20/2012] [Indexed: 11/27/2022] Open
Abstract
The use of multivariate analysis (MVA) methods in the processing of time-of-flight secondary ion mass spectrometry (ToF-SIMS) data has become increasingly more common. MVA presents a powerful set of tools to aid the user in processing data from complex, multicomponent surfaces such as biological materials and biosensors. When properly used, MVA can help the user identify the major sources of differences within a sample or between samples, determine where certain compounds exist on a sample, or verify the presence of compounds that have been engineered into the surface. Of all the MVA methods, principal component analysis (PCA) is the most commonly used and forms an excellent starting point for the application of many of the other methods employed to process ToF-SIMS data. Herein we discuss the application of PCA and other MVA methods to multicomponent ToF-SIMS data and provide guidelines on their application and use.
Collapse
Affiliation(s)
- Daniel J Graham
- Department of Bioengineering, National ESCA and Surface Analysis for Biomedical Problems, University of Washington, Seattle, WA 98195-1653, USA.
| | | |
Collapse
|
8
|
Glycosylated self-assembled monolayers for arrays and surface analysis. Methods Mol Biol 2011. [PMID: 22057519 DOI: 10.1007/978-1-61779-373-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Over the past few decades, carbohydrates (glycans) have received growing attention for their many roles in biological systems, including pathogenesis, receptor-ligand interactions, and cell signaling. To unravel the biology of this important category of biomolecules, a host of new tools have been developed for glycomics investigation. At the forefront is the carbohydrate microarray, developed to immobilize functional glycans on a solid substrate to rapidly screen a variety of potential binding partners (carbohydrates, proteins, nucleic acids, cells, and viruses). The essential role played by surface modification on glycan microarray performance requires new methods to rigorously characterize glycan surface chemistries. Due to their highly reproducible nature and well-studied properties, self-assembled monolayers (SAMs) on gold are powerful models for presenting glycans on a solid substrate, engineering biomimetic microenvironments and exploring the bioactivity of immobilized carbohydrates via surface plasmon resonance (SPR). However, it can be challenging to prepare high quality glycosylated SAMs (glyco-SAMs) that retain their biological function following surface immobilization. Herein, a selection of versatile methods for the preparation of glyco-SAMs using natural and chemically modified glycans is described. This chapter will highlight the following three immobilization techniques: (1) direct self assembly using thiolated glycosides onto gold, (2) tethering aminated glycosides onto -amine-reactive SAMs, and (3) conjugating natural glycan onto divinyl sulfone-activated SAMs.
Collapse
|