1
|
Ramirez JM, Calderon-Zavala AC, Balaram A, Heldwein EE. In vitro reconstitution of herpes simplex virus 1 fusion identifies low pH as a fusion co-trigger. mBio 2023; 14:e0208723. [PMID: 37874146 PMCID: PMC10746285 DOI: 10.1128/mbio.02087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE HSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.
Collapse
Affiliation(s)
- J. Martin Ramirez
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariana C. Calderon-Zavala
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariane Balaram
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:428-440. [PMID: 37594208 DOI: 10.1080/21691401.2023.2247036] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Liposomes are considered among the most versatile and advanced nanoparticle delivery systems used to target drugs to specific cells and tissues. Structurally, liposomes are sphere-like vesicles of phospholipid molecules that are surrounded by equal number of aqueous compartments. The spherical shell encapsulates an aqueous interior which contains substances such as peptides and proteins, hormones, enzymes, antibiotics, antifungal and anticancer agents. This structural property of liposomes makes it an important nano-carrier for drug delivery. Extrusion is one of the most frequently used technique for preparing monodisperse uni-lamellar liposomes as the technique is used to control vesicle size. The process involves passage of lipid suspension through polycarbonate membrane with a fixed pore size to produce vesicles with a diameter near the pore size of the membrane used in preparing them. An advantage of this technique is that there is no need to remove the organic solvent or detergent from the final preparation. This review focuses on composition of liposome formulation with special emphasis on factors affecting drug release and drug-loading.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, Lexington, MA, USA
| |
Collapse
|
3
|
Lillja J, Lanekoff I. Quantitative determination of sn-positional phospholipid isomers in MS n using silver cationization. Anal Bioanal Chem 2022; 414:7473-7482. [PMID: 35731255 PMCID: PMC9482905 DOI: 10.1007/s00216-022-04173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Glycerophospholipids are one of the fundamental building blocks for life. The acyl chain connectivity to the glycerol backbone constitutes different sn-positional isomers, which have great diversity and importance for biological function. However, to fully realize their impact on function, analytical techniques that can identify and quantify sn-positional isomers in chemically complex biological samples are needed. Here, we utilize silver ion cationization in combination with tandem mass spectrometry (MSn) to identify sn-positional isomers of phosphatidylcholine (PC) species. In particular, a labile carbocation is generated through a neutral loss (NL) of AgH, the dissociation of which provides diagnostic product ions that correspond to acyl chains at the sn-1 or sn-2 position. The method is comparable to currently available methods, has a sensitivity in the nM-µM range, and is compatible with quantitative imaging using mass spectrometry in MS4. The results reveal a large difference in isomer concentrations and the ion images show that the sn-positional isomers PC 18:1_18:0 are homogeneously distributed, whereas PC 18:1_16:0 and PC 20:1_16:0 show distinct localizations to sub-hippocampal structures.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden.
| |
Collapse
|
4
|
Alrumaihi F, Khan MA, Babiker AY, Alsaweed M, Azam F, Allemailem KS, Almatroudi AA, Ahamad SR, Alsugoor MH, Alharbi KN, Almansour NM, Khan A. Lipid-Based Nanoparticle Formulation of Diallyl Trisulfide Chemosensitizes the Growth Inhibitory Activity of Doxorubicin in Colorectal Cancer Model: A Novel In Vitro, In Vivo and In Silico Analysis. Molecules 2022; 27:molecules27072192. [PMID: 35408590 PMCID: PMC9000458 DOI: 10.3390/molecules27072192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Garlic’s main bioactive organosulfur component, diallyl trisulfide (DATS), has been widely investigated in cancer models. However, DATS is not suitable for clinical use due to its low solubility. The current study seeks to improve DATS bioavailability and assess its chemopreventive and chemosensitizing properties in an AOM-induced colorectal cancer model. The polyethylene glycol coated Distearoylphosphatidylcholine/Cholesterol (DSPC/Chol) comprising DATS-loaded DATSL and doxorubicin (DOXO)-encapsulated DOXL liposomes was prepared and characterized. The changes in the sensitivity of DATS and DOXO by DATSL and DOXL were evaluated in RKO and HT-29 colon cancer cells. The synergistic effect of DATSL and DOXL was studied by cell proliferation assay in the combinations of IC10, IC25, and IC35 of DATSL with the IC10 of DOXL. AOM, DATSL, and DOXL were administered to different groups of mice for a period of 21 weeks. The data exhibited ~93% and ~46% entrapment efficiency of DATSL and DOXL, respectively. The size of sham liposomes was 110.5 nm, whereas DATSL and DOXL were 135.5 nm and 169 nm, respectively. DATSL and DOXL exhibited significant sensitivity in the cell proliferation experiment, lowering their IC50 doses by more than 8- and 14-fold, respectively. However, the DATSL IC10, IC25, and IC35 showed escalating chemosensitivity, and treated the cells in combination with DOXL IC10. Analysis of histopathological, cancer marker enzymes, and antioxidant enzymes revealed that the high dose of DATSL pretreatment and DOXL chemotherapy is highly effective in inhibiting AOM-induced colon cancer promotion. The combination of DATSL and DOXL indicated promise as a colorectal cancer treatment in this study. Intermolecular interactions of DATS and DOXO against numerous cancer targets by molecular docking indicated MMP-9 as the most favourable target for DATS exhibiting binding energy of −4.6 kcal/mol. So far, this is the first research to demonstrate the chemopreventive as well as chemosensitizing potential of DATSL in an animal model of colorectal cancer.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Ahmad A. Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia;
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia;
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: ; Tel.: +966-590038460; Fax: +966-63801628
| |
Collapse
|
5
|
Alandiyjany MN, Abdelaziz AS, Abdelfattah-Hassan A, Hegazy WAH, Hassan AA, Elazab ST, Mohamed EAA, El-Shetry ES, Saleh AA, ElSawy NA, Ibrahim D. Novel In Vivo Assessment of Antimicrobial Efficacy of Ciprofloxacin Loaded Mesoporous Silica Nanoparticles against Salmonella typhimurium Infection. Pharmaceuticals (Basel) 2022; 15:ph15030357. [PMID: 35337154 PMCID: PMC8953957 DOI: 10.3390/ph15030357] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) is known for its intracellular survival, evading the robust inflammation and adaptive immune response of the host. The emergence of decreased ciprofloxacin (CIP) susceptibility (DCS) requires a prolonged antibiotic course with increased dosage, leading to threatening, adverse effects. Moreover, antibiotic-resistant bacteria can persist in biofilms, causing serious diseases. Hence, we validated the in vitro and in vivo efficacy of ciprofloxacin-loaded mesoporous silica nanoparticles (CIP–MSN) using a rat model of salmonella infection to compare the oral efficacy of 5 mg/kg body weight CIP–MSN and a traditional treatment regimen with 10 mg/kg CIP postinfection. Our results revealed that mesoporous silica particles can regulate the release rate of CIP with an MIC of 0.03125 mg/L against DCS S. typhimurium with a greater than 50% reduction of biofilm formation without significantly affecting the viable cells residing within the biofilm, and a sub-inhibitory concentration of CIP–MSN significantly reduced invA and FimA gene expressions. Furthermore, oral supplementation of CIP–MSN had an insignificant effect on all blood parameter values as well as on liver and kidney function parameters. MPO and NO activities that are key mediators of oxidative stress were abolished by CIP–MSN supplementation. Additionally, CIP–MSN supplementation has a promising role in attenuating the elevated secretion of pro-inflammatory cytokines and chemokines in serum from S. typhimurium-infected rats with a reduction in pro-apoptotic gene expression, resulting in reduced S. typhimurium-induced hepatic apoptosis. This counteracted the negative effects of the S. typhimurium challenge, as seen in a corrected histopathological picture of both the intestine and liver, along with increased bacterial clearance. We concluded that, compared with a normal ciprofloxacin treatment regime, MSN particles loaded with a half-dose of ciprofloxacin exhibited controlled release of the antibiotic, which can prolong the antibacterial effect.
Collapse
Affiliation(s)
- Maher N. Alandiyjany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Quality and Development Affair, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ahmed S. Abdelaziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt;
| | - Arwa A. Hassan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, El-Arish 45511, Egypt;
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Eman S. El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Ayman A. Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Naser A. ElSawy
- Department of Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| |
Collapse
|
6
|
Fatouh AM, Elshafeey AH, Abdelbary A. Galactosylated Chitosan Coated Liposomes of Ledipasvir for Liver Targeting: Chemical Synthesis, Statistical Optimization, In-vitro and In-vivo evaluation. J Pharm Sci 2020; 110:1148-1159. [PMID: 33039437 DOI: 10.1016/j.xphs.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023]
Abstract
Ledipasvir is a novel antiviral agent used in the treatment of hepatitis C. We aim in our study to increase its delivery to hepatocytes and prolong its retention within liver. Several formulae of ledipasvir loaded liposomes were prepared and the best formula regarding particle size, zeta potential, polydispersity index and entrapment efficiency was selected. On the other hand, galactosylated chitosan was synthesized in a chemical reaction. Then the best liposomes formula was coated with the galactosylated chitosan. Having galactose residues on their surface, the coated liposomes can bind to the asialoglycoprotein receptors on the targeted hepatocytes enhancing ledipasvir uptake into them. The galactosylated chitosan coated liposomes had particle size of 218.2 nm ± 7.21, zeta potential of 27.15 mV ± 1.76, polydispersity index of 0.278 ± 0.055 and entrapment efficiency % of 54.63% ± 0.05 respectively. The pharmacokinetic study revealed a significant increase in the liver peak concentration (Cmax) and the area under liver concentration versus time curve AUC(0-72 h) and significant prolongation in the liver terminal half life (t½) and mean residence time (MRT) in comparison to the oral dispersion of ledipasvir with values of 11,400 ng/g, 88,855 ng∗h/g, 32.00 h and 18.11 h respectively.
Collapse
Affiliation(s)
- Ahmed M Fatouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed H Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Design, optimization and characterization of novel topical formulations containing Triamcinolone Acetonide. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Hong SC, Park KM, Hong CR, Kim JC, Yang SH, Yu HS, Paik HD, Pan CH, Chang PS. Microfluidic assembly of liposomes dual-loaded with catechin and curcumin for enhancing bioavailability. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Nadaf SJ, Killedar SG. Nanoliposome Precursors for Shape Modulation: Use of Heuristic Algorithm and QBD Principles for Encapsulating Phytochemicals. Curr Drug Deliv 2020; 17:599-612. [PMID: 32394839 DOI: 10.2174/1567201817666200512102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/17/2020] [Accepted: 04/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Screening of multiple methods is worthless for formulators due to material losses, wastage of time, and expenditures. It is imperative to make a quick decision. OBJECTIVE The present investigation describes the systematic approach to select the best suitable method for the development of nanoliposomes (NL), the precursor of nanocochleates encapsulating curcumin using Analytic Hierarchy Process (AHP). METHODS Pair-wise comparison matrices were used to achieve the overall priority weight and ranking for the selection of appropriate technique. Furthermore, Plackett-Burman screening Design (PBD) was exploited to investigate specific effects of associated formulation and process variables on particle size (Y1), drug content (Y2), and entrapment efficiency (Y3), while fabricating NL. RESULTS Results revealed the reliability of the pair-wise comparison matrices and selected the ethanol injection method with the highest priority weight (0.337). Bland-Altman plot and control chart validated the results of AHP. The preparation of vesicles with the preferred diameter and size distribution was essentially fulfilled. Stirring speed (X5), amount of phospholipid (X4), and cholesterol (X8) showed significant influence (p<0.05;) on Y1 and Y3, PBD revealed. These factors can be further optimized using the design of experiments. CONCLUSION AHP being an effective tool, has assisted in selecting the best alternative for fabricating NL, whilst PBD enabled a clear understanding of the effects of diverse formulation variables on responses studied. Results ensure that NL is a riveting candidate for modulating effectively into tailormade diverse shaped nanoformulations for further in vitro; and in vivo; studies.
Collapse
Affiliation(s)
- Sameer J Nadaf
- Department of Pharmacognosy, Sant Gajanan Maharaj College of Pharmacy, Mahagaon-416503, Maharashtra, India
| | - Suresh G Killedar
- Department of Pharmacognosy, Sant Gajanan Maharaj College of Pharmacy, Mahagaon-416503, Maharashtra, India
| |
Collapse
|
10
|
Meinhardt S, Schmid F. Structure of lateral heterogeneities in a coarse-grained model for multicomponent membranes. SOFT MATTER 2019; 15:1942-1952. [PMID: 30662989 DOI: 10.1039/c8sm02261e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the lateral domain structure in a coarse-grained molecular model for multicomponent lipid bilayers by semi-grandcanonical Monte Carlo simulations. The membranes are filled with liquid ordered (lo) domains surrounded by a liquid disordered (ld) matrix. Depending on the membrane composition and temperature, we identify different morphological regimes: one regime (I) where the lo domains are small and relatively compact, and two regimes (II, II') where they are larger and often interconnected. In the latter two regimes, the ld matrix forms a network of disordered trenches separating the lo domains, with a relatively high content of interdigitated line defects. Since such defects are also a structural element of the modulated ripple phase in one component membranes, we argue that the regimes II, II' may be amorphous equivalents of the ripple phase in multicomponent membranes. We also analyze the local structure and provide evidence that the domains in regime I are stabilized by a monolayer curvature mechanism postulated in earlier work [S. Meinhardt et al., PNAS, 2013, 110, 4476].
Collapse
Affiliation(s)
- Sebastian Meinhardt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA
| | | |
Collapse
|
11
|
Nadaf SJ, Killedar SG. Curcumin nanocochleates: Use of design of experiments, solid state characterization, in vitro apoptosis and cytotoxicity against breast cancer MCF-7 cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Skalová Š, Vyskočil V, Barek J, Navrátil T. Model Biological Membranes and Possibilities of Application of Electrochemical Impedance Spectroscopy for their Characterization. ELECTROANAL 2017. [DOI: 10.1002/elan.201700649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Štěpánka Skalová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences; Dolejškova 3 182 23 Prague 8 Czech Republic
- Charles University; Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Vlastimil Vyskočil
- Charles University; Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Jiří Barek
- Charles University; Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Tomáš Navrátil
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences; Dolejškova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
13
|
Litz JP, Thakkar N, Portet T, Keller SL. Depletion with Cyclodextrin Reveals Two Populations of Cholesterol in Model Lipid Membranes. Biophys J 2017; 110:635-645. [PMID: 26840728 DOI: 10.1016/j.bpj.2015.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
Recent results provide evidence that cholesterol is highly accessible for removal from both cell and model membranes above a threshold concentration that varies with membrane composition. Here we measured the rate at which methyl-β-cyclodextrin depletes cholesterol from a supported lipid bilayer as a function of cholesterol mole fraction. We formed supported bilayers from two-component mixtures of cholesterol and a PC (phosphatidylcholine) lipid, and we directly visualized the rate of decrease in area of the bilayers with fluorescence microscopy. Our technique yields the accessibility of cholesterol over a wide range of concentrations (30-66 mol %) for many individual bilayers, enabling fast acquisition of replicate data. We found that the bilayers contain two populations of cholesterol, one with low surface accessibility and the other with high accessibility. A larger fraction of the total membrane cholesterol appears in the more accessible population when the acyl chains of the PC-lipid tails are more unsaturated. Our findings are most consistent with the predictions of the condensed-complex and cholesterol bilayer domain models of cholesterol-phospholipid interactions in lipid membranes.
Collapse
Affiliation(s)
- Jonathan P Litz
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Niket Thakkar
- Department of Chemistry, University of Washington, Seattle, Washington; Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Thomas Portet
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington; Department of Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
14
|
Mandal P, Noutsi P, Chaieb S. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study. Sci Rep 2016; 6:26907. [PMID: 27245215 PMCID: PMC4887913 DOI: 10.1038/srep26907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells' behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.
Collapse
Affiliation(s)
- Pritam Mandal
- Biological and Environmental Science and Engineering, KAUST, Thuwal, 23955, KSA
| | - Pakiza Noutsi
- Biological and Environmental Science and Engineering, KAUST, Thuwal, 23955, KSA
| | - Sahraoui Chaieb
- Biological and Environmental Science and Engineering, KAUST, Thuwal, 23955, KSA
- Lawrence Berkeley National Laboratory, 1 cyclotron road, Mailstop 6R-2100, Berkeley, CA-94720, USA
| |
Collapse
|
15
|
Mudakavi RJ, Raichur AM, Chakravortty D. Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections. RSC Adv 2014; 4:61160-61166. [DOI: 10.1039/c4ra12973c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Lipid coated mesoporous silica nanoparticle (L-MSN) were synthesized for oral delivery and targeting of ciprofloxacin for intracellular elimination ofSalmonellapathogen.
Collapse
Affiliation(s)
- Rajeev J. Mudakavi
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore, India
- Department of Materials Engineering
- Indian Institute of Science
| | - Ashok M. Raichur
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore, India
- The Bioengineering Program
- Indian Institute of Science
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore, India
- The Bioengineering Program
- Indian Institute of Science
| |
Collapse
|