1
|
Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00190-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Huang L, Cai B, Huang Y, Wang J, Zhu C, Shi K, Song Y, Feng G, Liu L, Zhang L. Comparative Study on 3D Printed Ti6Al4V Scaffolds with Surface Modifications Using Hydrothermal Treatment and Microarc Oxidation to Enhance Osteogenic Activity. ACS OMEGA 2021; 6:1465-1476. [PMID: 33490806 PMCID: PMC7818615 DOI: 10.1021/acsomega.0c05191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
![]()
Titanium (Ti) and
its alloys have been widely used in clinics as
preferred materials for bone tissue repair and replacement. However,
the lack of biological activity of Ti limits its clinical applications.
Surface modification of Ti with bioactive elements has always been
a research hotspot. In this study, to promote the osseointegration
of Ti6Al4V (Ti64) implants, calcium (Ca), oxygen (O), and phosphorus
(P) codoped multifunctional micro–nanohybrid coatings were
prepared on a three-dimensional (3D) printed porous Ti64 surface by
microarc oxidation (MAO) and a hydrothermal method (HT). The surface
morphologies, chemical compositions, and surface/cell interactions
of the obtained coatings were studied. In vitro experiments
indicated that all hybrid coating-modified Ti64 implants could enhance
protein adsorption and MC3T3 osteoblasts’ activity, adhesion,
and differentiation ability. In vivo experiments
showed that the hybrid coating promoted early osseointegration. By
comparison, microarc oxidation-treated Ti64 (M-Ti) has the best biological
activity and the strongest ability of osseointegration. It provides
important theoretical significance and potential application prospects
for improving the biological activity of Ti implants.
Collapse
Affiliation(s)
- Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bianyun Cai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan 471026, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingcheng Wang
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Shi
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
3
|
Fan B, Guo Z, Li X, Li S, Gao P, Xiao X, Wu J, Shen C, Jiao Y, Hou W. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects. Bioact Mater 2020; 5:1087-1101. [PMID: 32695938 PMCID: PMC7363989 DOI: 10.1016/j.bioactmat.2020.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
For large segmental bone defects, porous titanium scaffolds have some advantages, however, they lack electrical activity which hinders their further use. In this study, a barium titanate (BaTiO3) piezoelectric ceramic was used to modify the surface of a porous Ti6Al4V scaffold (pTi), which was characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and roughness and water contact angle analyses. Low intensity pulsed ultrasound (LIPUS) was applied in vitro and in vivo study. The activity of bone marrow mesenchymal stem cells, including adhesion, proliferation, and gene expression, was significantly superior in the BaTiO3/pTi, pTi + LIPUS, and BaTiO3/pTi + LIPUS groups than in the pTi group. The activity was also higher in the BaTiO3/pTi + LIPUS group than in the BaTiO3/pTi and pTi + LIPUS groups. Additionally, micro-computed tomography, the mineral apposition rate, histomorphology, and the peak pull-out load showed that these scaffold conditions significantly enhanced osteogenesis and osseointegration 6 and 12 weeks after implantation in large segmental bone defects in the radius of rabbits compared with those resulting from the pTi condition. Consequently, the improved osteogenesis and osseointegration make the BaTiO3/pTi + LIPUS a promising method to promote bone regeneration in large segmental bone defects for clinical application.
Collapse
Affiliation(s)
- Bo Fan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Orthopedic Centre-Spine Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songkai Li
- Orthopedic Centre-Spine Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China
| | - Peng Gao
- Department of Joint Surgery and Sports Medicine, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, PR China
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Shen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
4
|
Influence of HIP Treatment on Mechanical Properties of Ti6Al4V Scaffolds Prepared by L-PBF Process. METALS 2019. [DOI: 10.3390/met9121267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve biocompatibility and mechanical compatibility, post-treatment is necessary for porous scaffolds of bone tissue engineering. Hot isostatic pressing (HIP) is introduced into post-treatment of metal implants to enhance their mechanical properties by eliminating residual stress and pores. Additionally, oxide film formed on the material surface can be contributed to improve its biocompatibility. Ti6Al4V porous scaffolds fabricated by laser-powder bed fusion (L-PBF) process is studied in this paper, their mechanical properties are measured by pressure test, and the macroscopic surface morphology and microstructure are observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). After HIP treatment, an oxide layer of 0.8 μm thickness forms on the surface of Ti6Al4V porous scaffolds and the microstructure of Ti6Al4V transforms from α’ phase to α + β dual-phase, as expected. However, the pressure test results of Ti6Al4V porous scaffolds show a definitely different variation trend of mechanical properties from solid parts, unexpectedly. Concerning Ti6Al4V porous scaffolds, the compression stiffness and critical stress improves clearly using HIP treatment, and the fracture morphology shows obvious brittle fracture. Both the strengthening and brittleness transition of Ti6Al4V porous scaffolds result from the formation of an oxide layer and an oxygen atom diffusion layer. The critical stress of Ti6Al4V porous scaffolds can be calculated by fully considering these two strengthening layers. To obtain a porous scaffold with specific mechanical properties, the effect of post-treatment should be considered during structural design.
Collapse
|
5
|
Weißmann V, Ramskogler T, Schulze C, Bader R, Hansmann H. Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1052. [PMID: 30935040 PMCID: PMC6479851 DOI: 10.3390/ma12071052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND The development in implants such as acetabular cups using additive manufacturing techniques is playing an increasingly important role in the healthcare industry. METHOD This study compared the primary stability of four selectively laser-melted press-fit cups (Ti6Al4V) with open-porous, load-bearing structural elements on the surface. The aim was to assess whether the material of the artificial bone stock affects the primary stability of the acetabular cup. The surface structures consist of repeated open-porous, load-bearing elements orthogonal to the acetabular surface. Experimental pull-out and lever-out tests were performed on exact-fit and press-fit cups to evaluate the primary stability of the cups in different synthetic bone substitutes. The acetabular components were placed in three different commercially available synthetic materials (ROHACELL-IGF 110, SikaBlock M330, Sawbones Solid Rigid). Results & conclusions: Within the scope of the study, it was possible to show the differences in fixation strength between the tested acetabular cups depending on their design, the structural elements used, and the different bone substitute material. In addition, functional correlations could be found which provide a qualitative reference to the material density of the bone stock and the press-fit volume of the acetabular cups.
Collapse
Affiliation(s)
- Volker Weißmann
- Faculty of Engineering, University of Applied Sciences, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Tim Ramskogler
- Department Industrial Engineering, Technical University of Applied Sciences, Hetzenrichter Weg 15, 92637 Weiden, Germany.
| | - Christian Schulze
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Harald Hansmann
- Faculty of Engineering, University of Applied Sciences, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
| |
Collapse
|
6
|
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Collapse
|
7
|
Weißmann V, Drescher P, Seitz H, Hansmann H, Bader R, Seyfarth A, Klinder A, Jonitz-Heincke A. Effects of Build Orientation on Surface Morphology and Bone Cell Activity of Additively Manufactured Ti6Al4V Specimens. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E915. [PMID: 29844256 PMCID: PMC6024895 DOI: 10.3390/ma11060915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/30/2022]
Abstract
Additive manufacturing of lightweight or functional structures by selective laser beam (SLM) or electron beam melting (EBM) is widespread, especially in the field of medical applications. SLM and EBM processes were applied to prepare Ti6Al4V test specimens with different surface orientations (0°, 45° and 90°). Roughness measurements of the surfaces were conducted and cell behavior on these surfaces was analyzed. Hence, human osteoblasts were seeded on test specimens to determine cell viability (metabolic activity, live-dead staining) and gene expression of collagen type 1 (Col1A1), matrix metalloprotease (MMP) 1 and its natural inhibitor, TIMP1, after 3 and 7 days. The surface orientation of specimens during the manufacturing process significantly influenced the roughness. Surface roughness showed significant impact on cellular viability, whereas differences between the time points day 3 and 7 were not found. Collagen type 1 mRNA synthesis rates in human osteoblasts were enhanced with increasing roughness. Both manufacturing techniques further influenced the induction of bone formation process in the cell culture. Moreover, the relationship between osteoblastic collagen type 1 mRNA synthesis rates and specimen orientation during the building process could be characterized by functional formulas. These findings are useful in the designing of biomedical applications and medical devices.
Collapse
Affiliation(s)
- Volker Weißmann
- Faculty of Engineering, University of Applied Science, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Philipp Drescher
- Fluid Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany.
| | - Hermann Seitz
- Fluid Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany.
| | - Harald Hansmann
- Institute for Polymer Technologies e.V., Alter Holzhafen 19, 23966 Wismar, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Anika Seyfarth
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Annett Klinder
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| |
Collapse
|
8
|
Yin B, Xue B, Wu Z, Ma J, Wang K. A novel hybrid 3D-printed titanium scaffold for osteogenesis in a rabbit calvarial defect model. Am J Transl Res 2018; 10:474-482. [PMID: 29511441 PMCID: PMC5835812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
The aim of this study was to explore an innovative method to improve the osteogenic ability of porous titanium. We used gelatin (Gel) and nano-hydroxyapatite (nHA) to construct micro-scaffolds within the pores of porous titanium alloy. We compared three groups: control, Gel:nHA = 1:0, and Gel:nHA = 1:1. We assessed cell attachment, cell proliferation, and osteogenic (alkaline phosphatase [ALP] and collagen type 1 [Col-1]) and cytoskeletal (Talin) gene and protein expression in MC3T3-E1 cells. We also evaluated osteogenic abilities in a rabbit calvarial defect model. Our results showed that micro-scaffolds can improve new bone formation both in vitro and in vivo. Between the two micro-scaffold groups, the Gel:nHA = 1:1 group exhibited the most satisfactory results. It had a multi-hierarchical pore structure with a mean pore size of 156±86 μm. The Gel:nHA = 1:1 group exhibited significantly higher gene and protein expression of ALP, Col-1, and Talin. This group also exhibited the most new bone volume during in vivo experiments. The 3D micro-scaffold structure was an effective method of porous titanium modification that not only provided appropriate cell growth conditions but may also be used as a carrier of bioactive factors in the future.
Collapse
Affiliation(s)
- Bo Yin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 33, Badachu Road, Shijingshan District, Beijing 100144, China
| | - Bingjian Xue
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 33, Badachu Road, Shijingshan District, Beijing 100144, China
| | - Zhihong Wu
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesNo. 1 Shuaifuyuan, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint DiseaseNo. 1 Shuaifuyuan, Beijing 100730, China
| | - Jiguang Ma
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 33, Badachu Road, Shijingshan District, Beijing 100144, China
| | - Keming Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 33, Badachu Road, Shijingshan District, Beijing 100144, China
| |
Collapse
|
9
|
Cheng A, Cohen DJ, Kahn A, Clohessy RM, Sahingur K, Newton JB, Hyzy SL, Boyan BD, Schwartz Z. Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth. Ann Biomed Eng 2017; 45:2025-2035. [PMID: 28409291 DOI: 10.1007/s10439-017-1831-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.
Collapse
Affiliation(s)
- Alice Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - David J Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Adrian Kahn
- Department of Oral Surgery, University of Tel-Aviv, Tel Aviv, Israel
| | - Ryan M Clohessy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Kaan Sahingur
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph B Newton
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. .,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA. .,School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
10
|
Specific Yielding of Selective Laser-Melted Ti6Al4V Open-Porous Scaffolds as a Function of Unit Cell Design and Dimensions. METALS 2016. [DOI: 10.3390/met6070166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res 2016; 34:369-85. [PMID: 26488900 DOI: 10.1002/jor.23075] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/16/2015] [Indexed: 02/04/2023]
Abstract
Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored.
Collapse
Affiliation(s)
- Swee Leong Sing
- SIMTech-NTU Joint Laboratory (3D Additive Manufacturing), Nanyang Technological University, HW3-01-01, 65A Nanyang Drive, Singapore 637333.,Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, Singapore 637372
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, Singapore 637372
| | - Wai Yee Yeong
- SIMTech-NTU Joint Laboratory (3D Additive Manufacturing), Nanyang Technological University, HW3-01-01, 65A Nanyang Drive, Singapore 637333.,Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, Singapore 637372
| | - Florencia Edith Wiria
- SIMTech-NTU Joint Laboratory (3D Additive Manufacturing), Nanyang Technological University, HW3-01-01, 65A Nanyang Drive, Singapore 637333.,Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
| |
Collapse
|
12
|
Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human Osteoblasts Behavior in Static and Dynamic Cell Investigations. MATERIALS 2015; 8:5490-5507. [PMID: 28793519 PMCID: PMC5455497 DOI: 10.3390/ma8085259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/30/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration.
Collapse
|
13
|
Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep. Biomaterials 2015; 46:35-47. [DOI: 10.1016/j.biomaterials.2014.12.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/26/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022]
|