1
|
Tan J, Kong L, Huang Q, Gan Y, Lu S. Harnessing the power of polyethyleneimine in modifying chitosan surfaces for efficient anion dyes and hexavalent chromium removal. ENVIRONMENTAL RESEARCH 2024; 247:118192. [PMID: 38224939 DOI: 10.1016/j.envres.2024.118192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.
Collapse
Affiliation(s)
- Jisuan Tan
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China.
| | - Lingzhen Kong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Qiaoxian Huang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Yulin Gan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
2
|
Development and Characterization of Functional Polylactic Acid/Chitosan Porous Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14235079. [PMID: 36501473 PMCID: PMC9739485 DOI: 10.3390/polym14235079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we developed and characterized various open-cell composite scaffolds for bone regeneration. These scaffolds were made from Polylactic acid (PLA) as the scaffold matrix biopolymeric phase, and chitosan (CS) and chitosan-grafted-PLA (CS-g-PLA) copolymer as the dispersed biopolymeric phase. As a first step, successful grafting of PLA onto CS backbone was executed and confirmed by both FTIR and XPS. Mechanical characterization confirmed that adding CS or CS-g-PLA to the intrinsically rigid PLA made their corresponding PLA/CS and PLA/CS-g-PLA composite scaffolds more flexible under compression. This flexibility was higher for the latter due to the improved compatibility between PLA and CS-g-PLA copolymer. The hydrolytic stability of both PLA/CS and PLA/CS-g-PLA composite scaffolds inside phosphate-buffered saline (PBS) solution, as well as MG-63 osteoblast cell adhesion and proliferation inside both scaffolds, were characterized. The corresponding results revealed that PLA/CS composite scaffolds showed hydrolytic degradation due to the cationic properties of CS. However, modified PLA/CS-g-PLA scaffolds were hydrolytically stable due to the improved interfacial adhesion between the PLA matrix and CS-g-PLA copolymer. Finally, biological characterization was done for both PLA/CS and PLA/CS-g-PLA composite scaffolds. Contrarily to what was observed for uncompatibilized PLA/CS scaffolds, compatibilized PLA/CS-g-PLA scaffolds showed a high MG-63 osteoblast cell proliferation after three and five days of cell culture. Moreover, it was observed that cell proliferation increased with CS-g-PLA content. This suggests that the PLA/CS-g-PLA composite scaffolds could be a potential solution for bone regeneration.
Collapse
|
3
|
Vigneswari S, Gurusamy TP, Khairul WM, H.P.S. AK, Ramakrishna S, Amirul AAA. Surface Characterization and Physiochemical Evaluation of P(3HB- co-4HB)-Collagen Peptide Scaffolds with Silver Sulfadiazine as Antimicrobial Agent for Potential Infection-Resistance Biomaterial. Polymers (Basel) 2021; 13:2454. [PMID: 34372060 PMCID: PMC8347226 DOI: 10.3390/polym13152454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a bacterial derived biopolymer widely known for its unique physical and mechanical properties to be used in biomedical application. In this study, antimicrobial agent silver sulfadiazine (SSD) coat/collagen peptide coat-P(3HB-co-4HB) (SCCC) and SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffolds (SBCC) were fabricated using a green salt leaching technique combined with freeze-drying. This was then followed by the incorporation of collagen peptides at various concentrations (2.5-12.5 wt.%) to P(3HB-co-4HB) using collagen-coating. As a result, two types of P(3HB-co-4HB) scaffolds were fabricated, including SCCC and SBCC scaffolds. The increasing concentrations of collagen peptides from 2.5 wt.% to 12.5 wt.% exhibited a decline in their porosity. The wettability and hydrophilicity increased as the concentration of collagen peptides in the scaffolds increased. In terms of the cytotoxic results, MTS assay demonstrated the L929 fibroblast scaffolds adhered well to the fabricated scaffolds. The 10 wt.% collagen peptides coated SCCC and SBCC scaffolds displayed highest cell proliferation rate. The antimicrobial analysis of the fabricated scaffolds exhibited 100% inhibition towards various pathogenic microorganisms. However, the SCCC scaffold exhibited 100% inhibition between 12 and 24 h, but the SBCC scaffolds with SSD impregnated in the scaffold had controlled release of the antimicrobial agent. Thus, this study will elucidate the surface interface-cell interactions of the SSD-P(3HB-co-4HB)-collagen peptide scaffolds and controlled release of SSD, antimicrobial agent.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (S.V.); (W.M.K.)
| | - Tana Poorani Gurusamy
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Wan M. Khairul
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (S.V.); (W.M.K.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, Gelugor 11700, Penang, Malaysia
| |
Collapse
|
4
|
Abolgheit S, Abdelkader S, Aboushelib M, Omar E, Mehanna R. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl 2020; 36:128-139. [PMID: 33019853 DOI: 10.1177/0885328220963920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Over the past ten years, regenerative medicine has focused on the regeneration and the reconstruction of damaged, diseased, or lost tissues and organs. Skin, being the largest organ in the human body, had attained a good attraction in this field. Delayed wound healing is one of the most challenging clinical medicine complications. This study aimed to evaluate the collagen chitosan scaffold's effect alone, or enriched with either bone marrow-derived mesenchymal stem cells (BM-MSCs) or their secreted extracellular vesicles (EVs) on the duration and quality of skin wound healing. METHODS A full-thickness skin wound was induced on the back of 32 adult male Sprague-Dawley rats. The wounds were either covered with collagen chitosan scaffolds alone, scaffolds enriched with stem cells, or extracellular vesicles. Unprotected wounds were used as control. Healing duration, collagen deposition and alignment, CD 68+ macrophage count, and functional tensile strength of healed skin were assessed (α = 0.05, n = 8). RESULTS The rate of skin healing was significantly accelerated in all treated groups compared to the control. Immuno-histochemical assessment of CD68+ macrophages showed enhanced macrophages count, in addition to higher collagen deposition and better collagen alignment in EVs and BM-MSCs treated groups compared to the control group. Higher tensile strength values reflected the better collagen deposition and alignment for these groups. EVs showed higher amounts of collagen deposition and better alignment compared to MSCs treated group. CONCLUSION The collagen chitosan scaffolds enriched with MSCs or their EVs improved wound healing and improved the quantity and remodeling of collagen with a better assignment to EVs.
Collapse
Affiliation(s)
- Salma Abolgheit
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | | | | - Enas Omar
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Radwa Mehanna
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Long L, Hu X, Yan J, Zeng Y, Zhang J, Xue Y. Novel chitosan-ethylene glycol hydrogel for the removal of aqueous perfluorooctanoic acid. J Environ Sci (China) 2019; 84:21-28. [PMID: 31284913 DOI: 10.1016/j.jes.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
It is urgent to explore an effective removal method for perfluorooctanoic acid (PFOA) due to its recalcitrant nature. In this study, a novel chitosan-based hydrogel (CEGH) was prepared with a simple method using chitosan and ethylene glycol through a repeated freezing-thawing procedure. The adsorption of PFOA anions to CEGH agreed well to the Freundlich-Langmuir model with a maximum adsorption capacity as high as 1275.9 mg/g, which is higher than reported values of most adsorbents for PFOA. The adsorption was influenced by experimental conditions. Experimental results showed that the main removal mechanism was the ionic hydrogen bond interaction between carbonyl groups (COO-) of PFOA and protonated amine (NH+) of the CEGH adsorbent. Therefore, CEGH is a very attractive adsorbent that can be used to remove PFOA from water in the future.
Collapse
Affiliation(s)
- Li Long
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Xiaolan Hu
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Jinpeng Yan
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Yifan Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Jiaqi Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
6
|
Susanto A, Satari MH, Abbas B, Koesoemowidodo RSA, Cahyanto A. Fabrication and Characterization of Chitosan-Collagen Membrane from Barramundi (Lates Calcarifer) Scales for Guided Tissue Regeneration. Eur J Dent 2019; 13:370-375. [PMID: 31795003 PMCID: PMC6890500 DOI: 10.1055/s-0039-1698610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the synthesis, mechanical strength, and morphology of chitosan-collagen membranes from barramundi scales for guided tissue regeneration technique. MATERIALS AND METHODS Collagen was extracted from barramundi scales by immersion in acetic acid. The resulting wet collagen was later dried. The membrane was fabricated by mixing chitosan with collagen from barramundi scales. Membrane characterization parameters were measured using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and mechanical property. RESULTS The FTIR spectrum showed the typical peak of the mixture of chitosan and collagen. The tensile strength and elongation at break of the membrane in dry condition were 0.28 MPa and 8.53%, respectively, while in the wet condition these were 0.12 MPa and 25.6%. The membrane porosity test result was 38.85%; SEM result showed a porous membrane surface with size varying around 16 to 100 µm. CONCLUSION The chitosan-collagen membrane from the barramundi scale showed the fibrous membrane surface that has ideal porous size as guided tissue regeneration membrane and the lower mechanical strength.
Collapse
Affiliation(s)
- Agus Susanto
- Department of Periodontics, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Mieke Hemiawati Satari
- Department of Oral Biology, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Basril Abbas
- National Nuclear Energy Agency of Indonesia (BATAN), Jakarta, Indonesia
| | | | - Arief Cahyanto
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
7
|
Rouabhia M, Mighri N, Mao J, Park HJ, Mighri F, Ajji A, Zhang Z. Surface treatment with amino acids of porous collagen based scaffolds to improve cell adhesion and proliferation. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; 2420 rue de la Terrasse Québec QC G1V 0A6 Canada
| | - Nabila Mighri
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; 2420 rue de la Terrasse Québec QC G1V 0A6 Canada
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| | - Jifu Mao
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| | - Hyun Jin Park
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; 2420 rue de la Terrasse Québec QC G1V 0A6 Canada
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| | - Frej Mighri
- Department of Chemical Engineering; Université Laval; 1065 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Abdallah Ajji
- Department of Chemical Engineering; École Polytechnique de Montréal; Montréal QC H3C 3A7 Canada
| | - Ze Zhang
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| |
Collapse
|
8
|
Lü X, Zhang H, Huang Y, Zhang Y. A proteomics study to explore the role of adsorbed serum proteins for PC12 cell adhesion and growth on chitosan and collagen/chitosan surfaces. Regen Biomater 2018; 5:261-273. [PMID: 30338124 PMCID: PMC6184651 DOI: 10.1093/rb/rby017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 06/02/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of this article is to apply proteomics in the comparison of the molecular mechanisms of PC12 cell adhesion and growth mediated by the adsorbed serum proteins on the surfaces of chitosan and collagen/chitosan films. First, the chitosan and the collagen/chitosan films were prepared by spin coating; and their surface morphologies were characterized by scanning electron microscopy, X-ray energy dispersive spectroscopy, contact angle measurement and Fourier transform infrared spectroscopy. Subsequently, cell proliferation experiments on two materials were performed and the dynamic curves of protein adsorption on their surfaces were measured. Then, proteomics and bioinformatics were used to analyze and compare the adsorbed serum proteins on the surfaces of two biomaterials; and their effects on cell adhesion were discussed. The results showed that the optimum concentration of chitosan film was 2% w/v. When compared with chitosan film, collagen/chitosan film promoted the growth and proliferation of PC12 cells more significantly. Although the dynamic curves showed no significant difference in the total amount of the adsorbed proteins on both surfaces, proteomics and bioinformatics analyses revealed a difference in protein types: the chitosan surface adsorbed more vitronectin whereas collagen/chitosan surface adsorbed more fibronectin 1 and contained more cell surface receptor binding sites and more Leu-Asp-Val sequences in its surface structure; the collagen/chitosan surface were more conducive to promoting cell adhesion and growth.
Collapse
Affiliation(s)
- Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| | - Heng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| | - Yiwen Zhang
- SQ Medical Device Co., Ltd., Nanjing, P.R. China
| |
Collapse
|
9
|
Sampath UGTM, Ching YC, Chuah CH, Sabariah JJ, Lin PC. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E991. [PMID: 28774113 PMCID: PMC5456954 DOI: 10.3390/ma9120991] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022]
Abstract
Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.
Collapse
Affiliation(s)
| | - Yern Chee Ching
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Johari J Sabariah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pai-Chen Lin
- Department of Mechanical Engineering, National Chung Cheng University, 621 Chiayi Country, Taiwan.
| |
Collapse
|