1
|
Abdelrazek GM, EL-Deeb MM, Farghali AA, Pérez-Cadenas AF, Abdelwahab A. Design of Self-Supported Flexible Nanostars MFe-LDH@ Carbon Xerogel-Modified Electrode for Methanol Oxidation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5271. [PMID: 34576486 PMCID: PMC8465867 DOI: 10.3390/ma14185271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Layered double hydroxides (LDHs) have emerged as promising electrodes materials for the methanol oxidation reaction. Here, we report on the preparation of different LDHs with the hydrothermal process. The effect of the divalent cation (i.e., Ni, Co, and Zn) on the electrochemical performance of methanol oxidation was investigated. Moreover, nanocomposites of LDHs and carbon xerogels (CX) supported on nickel foam (NF) substrate were prepared to investigate the role of carbon xerogel. The results show that NiFe-LDH/CX/NF is an efficient electrocatalyst for methanol oxidation with a current density that reaches 400 mA·m-2 compared to 250 and 90 mA·cm-2 for NiFe-LDH/NF and NF, respectively. In addition, all LDH/CX/NF nanocomposites show excellent stability for methanol oxidation. A clear relationship is observed between the electrodes crystallite size and their activity to methanol oxidation. The smaller the crystallite size, the higher the current density delivered. Additionally, the presence of carbon xerogel in the nanocomposites offer 3D interconnected micro/mesopores, which facilitate both mass and electron transport.
Collapse
Affiliation(s)
- Ghada M. Abdelrazek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
- Chemistry Department, Faculty of Engineering, Basic Science, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt
| | - Mohamed M. EL-Deeb
- Applied Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
| | - Agustín F. Pérez-Cadenas
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
| | - Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
- Faculty of Science, Galala University, Sokhna, Suez 43511, Egypt
| |
Collapse
|
2
|
Cao L, Kiely J, Piano M, Luxton R. A Copper Oxide/Zinc Oxide Composite Nano-Surface for Use in a Biosensor. MATERIALS 2019; 12:ma12071126. [PMID: 30959878 PMCID: PMC6480568 DOI: 10.3390/ma12071126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023]
Abstract
In this study, biosensors based on zinc oxide–copper oxide composite nano-surfaces were prepared using a simple and inexpensive distributed colloidal technique. Combinations of mixed dispersions with volume ratios of 1:1, 1:2 and 2:1 ZnO:CuO were compared. The uniform nano-crystalline sensor surfaces on polyethylene terephthalate (PET) were analysed using scanning electron microscopy (SEM), Atomic Force Microscopy (AFM) and Raman Spectroscopy. The ZnO–CuO composite biosensor nano-surfaces showed a significantly increased impedimetric signal compared with pure ZnO nanocrystals, and the maximum output was achieved with a volume ratio of 1:2 ZnO/CuO. The antibody capture of C-reactive protein (CRP) on the nano-surfaces was used to demonstrate the enhanced signal generated with increasing amounts of CuO in the nano-surface.
Collapse
Affiliation(s)
- Lu Cao
- Institute of Bio-Sensing Technology, University of the West of England, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Janice Kiely
- Institute of Bio-Sensing Technology, University of the West of England, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Martina Piano
- Institute of Bio-Sensing Technology, University of the West of England, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Richard Luxton
- Institute of Bio-Sensing Technology, University of the West of England, Frenchay Campus, Bristol BS16 1QY, UK.
| |
Collapse
|
3
|
Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl Microbiol Biotechnol 2018; 102:10409-10423. [PMID: 30327832 DOI: 10.1007/s00253-018-9421-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
Laccases exhibit a wide range of applications, especially in the electrochemical field, where they are regarded as a potential biotic component. Laccase-based biosensors have immense practical applications in the food, environmental, and medical fields. The application of laccases as biocathodes in enzymatic biofuel cells has promising potential in the preparation of implantable equipment. Extensive studies have been directed towards the potential role of fungal laccases as biotic components of electrochemical equipment. In contrast, the potential of prokaryotic laccases in electrochemistry has been not fully understood. However, there has been recent and rapid progress in the discovery and characterization of new types of prokaryotic laccases. In this review, we have comprehensively discussed the application of different sources of laccases as a biocatalytic component in various fields of application. Further, we described the potential of different types of laccases in bioelectrochemical applications.
Collapse
|
4
|
Niu P, Gich M, Roig A, Fernández-Sánchez C. Metal Nanoparticle Carbon Gel Composites in Environmental Water Sensing Applications. CHEM REC 2018; 18:749-758. [PMID: 29806230 DOI: 10.1002/tcr.201800011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 11/11/2022]
Abstract
The synthesis of organic-inorganic nanocomposites that can interact with different environmental pollutants and can be mass-produced are very promising materials for the fabrication of chemical sensor devices. Among them, metal (or metal oxide) nanoparticles doped conductive porous carbon composites can be readily applied to the production of electrochemical sensors and show enhanced sensitivity for the measurement of water pollutants, thanks to the abundant accessible and functional sites provided by the interconnected porosity and the metallic nanoparticles, respectively. In this personal account, an overview of several synthesis routes of porous carbon composites containing metallic nanoparticles is given, paying special attention to those based on sol-gel techniques. These are very powerful to synthesize hybrid porous materials that can be easily processed into powders and thin films, so that they can be implemented in electrode fabrication processes based on screen-printing and lithography techniques, respectively. We emphasize the sol-gel routes developed in our group for the synthesis of bismuth or gold nanoparticle doped porous carbon composites applied to fabricate electrochemical sensors that can be scaled down to produce miniaturized on-chip sensing devices for the sensitive detection of heavy metal pollutants in water. The trend towards the miniaturization of electrochemical sensors to be readily employed as analytical tools in environmental monitoring follow the market requirements of rapid and accurate on-site analysis, small sample consumption and waste production, as well as potential for continuous or semi-continuous in-situ determination of a wide variety of target analytes.
Collapse
Affiliation(s)
- Pengfei Niu
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, 300072, Tianjin, China
| | - Martí Gich
- Institut de Ciència de Materials de Barcelona, ICMAB (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193, Bellaterra, Spain
| |
Collapse
|
5
|
Pleşa Chicinaş R, Gál E, Bedelean H, Darabantu M, Măicăneanu A. Novel metal modified diatomite, zeolite and carbon xerogel catalysts for mild conditions wet air oxidation of phenol: Characterization, efficiency and reaction pathway. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Effect of pore geometry on the electrocatalytic performance of nickel cobaltite/ carbon xerogel nanocomposite for methanol oxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|