1
|
Thakur M, Rho O, Khandelwal A, Nathan CAO, DiGiovanni J. Inducible Keratinocyte Specific FGFR2 Deficiency Inhibits UVB-Induced Signaling, Proliferation, Inflammation, and Skin Carcinogenesis. J Invest Dermatol 2024; 144:341-350.e7. [PMID: 37660781 DOI: 10.1016/j.jid.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
A potential role for fibroblast growth factor receptor 2 (FGFR2) in cutaneous squamous cell carcinoma (cSCC) has been reported. To demonstrate the specific role of FGFR2 in UVB-induced skin carcinogenesis and development of cSCC, we generated a keratinocyte specific, tamoxifen inducible mouse model of FGFR2 deficiency. In this mouse model, topical application of 4-hydroxy tamoxifen led to the induction of Cre recombinase to delete FGFR2 in epidermal keratinocytes of both male and female transgenic mice. Analysis of epidermal protein lysates isolated from FGFR2 deficient mice exposed to UVB showed significant reductions of phospho-FGFR (pFGFR; Y653/654) and phospho-fibroblast growth factor receptor substrate 2α as well as downstream effectors of mTORC1 signaling. Phosphorylation of signal transducer and activators of transcription 1/3 was significantly reduced as well as levels of IRF-1, DUSP6, early growth response 1, and PD-L1 compared to the control groups. Keratinocyte-specific ablation of FGFR2 also significantly inhibited epidermal hyperproliferation, hyperplasia, and inflammation after exposure to UVB. Finally, keratinocyte-specific deletion of FGFR2 significantly inhibited UVB-induced cSCC formation. Collectively, the current data demonstrate an important role of FGFR2 in UVB-induced oncogenic signaling as well as development of cSCC. In addition, the current preclinical findings suggest that inhibition of FGFR2 signaling may provide a previously unreported strategy to prevent and/or treat UVB-induced cSCC.
Collapse
Affiliation(s)
- Megha Thakur
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Alok Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA; Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, Los Angeles, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA; LiveStrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA; Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
2
|
Tang X, Huang W, Kang J, Ding K. Early dynamic changes of quasispecies in the reverse transcriptase region of hepatitis B virus in telbivudine treatment. Antiviral Res 2021; 195:105178. [PMID: 34509461 DOI: 10.1016/j.antiviral.2021.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Telbivudine (LdT) - a synthetic thymidine β-L-nucleoside analogue (NA) - is an effective inhibitor for hepatitis B virus (HBV) replication. The quasispecies spectra in the reverse transcriptase (RT) region of the HBV genome and their dynamic changes associated with LdT treatment remains largely unknown. METHODS We prospectively recruited a total of 21 treatment-naive patients with chronic HBV infection and collected sequential serum samples at five time points (baseline, weeks 1, 3, 12, and 24 after LdT treatment). The HBV RT region was amplified and shotgun-sequenced by the Ion Torrent Personal Genome Machine (PGM)® system. We reconstructed full-length haplotypes of the RT region using an integrated bioinformatics framework, including de novo contig assembly and full-length haplotype reconstruction. In addition, we investigated the quasispecies' dynamic changes and evolution history and characterized potential NAs resistant mutations over the treatment course. RESULTS Viral quasispecies differed obviously between patients with complete (n = 8) and incomplete/no response (n = 13) at 12 weeks after LdT treatment. A reduced dN/dS ratio in quasispecies demonstrated a selective constraint resulting from antiviral therapy. The temporal clustering of sequential quasispecies showed different patterns along with a 24-week observation, although its statistic did not differ significantly. Several patients harboring pre-existing resistant mutations showed different clinical responses, while NAs resistant mutations were rare within a short-term treatment. CONCLUSION A complete profile of quasispecies reconstructed from in-depth shotgun sequencing may has important implications for enhancing clinical decision in adjusting antiviral therapy timely.
Collapse
Affiliation(s)
- Xia Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Wenxun Huang
- Department of Infectious Diseases, Chongqing Three Gorges Central Hospital, Chongqing, 404000, PR China
| | - Juan Kang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400003, PR China
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450003, PR China.
| |
Collapse
|