Chiriatti G, Carbonari L, Ceravolo MG, Andrenelli E, Millevolte M, Palmieri G. A Robot-Assisted Framework for Rehabilitation Practices: Implementation and Experimental Results.
SENSORS (BASEL, SWITZERLAND) 2023;
23:7652. [PMID:
37688108 PMCID:
PMC10563072 DOI:
10.3390/s23177652]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
One of the most interesting characteristics of collaborative robots is their ability to be used in close cooperation scenarios. In industry, this facilitates the implementation of human-in-loop workflows. However, this feature can also be exploited in different fields, such as healthcare. In this paper, a rehabilitation framework for the upper limbs of neurological patients is presented, consisting of a collaborative robot that helps users perform three-dimensional trajectories. Such a practice is aimed at improving the coordination of patients by guiding their motions in a preferred direction. We present the mechatronic setup, along with a preliminary experimental set of results from 19 volunteers (patients and control subjects) who provided positive feedback on the training experience (52% of the subjects would return and 44% enjoyed performing the exercise). Patients were able to execute the exercise, with a maximum deviation from the trajectory of 16 mm. The muscular effort required was limited, with average maximum forces recorded at around 50 N.
Collapse