1
|
Boukheddaden K, El Islam Belmouri N, di Scala N. Ising-Like Model Hasn't Yet Said Its Last Word: Exact and Mean-Field Investigations of 2, 3 and 4-Body Interactions in 1D Ising Chain of Binuclear Spin-Crossover Solids. Chemphyschem 2024; 25:e202400238. [PMID: 38837584 DOI: 10.1002/cphc.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
We investigate the static properties of a new class of 1D Ising-like Hamiltonian for binuclear spin-crossover materials accounting for two-, three-, and four-body short-range interactions between binuclear units of spins( s 1 A , s 1 B ) ${(s_1^A, s_1^B )}$ and( s 2 A , s 2 B ) ${(s_2^A, s_2^B )}$ . The following 2-, 3-, and 4-bodyJ 1 ( s 1 A + s 1 B ) ( s 2 A + s 2 B ) ${J_1 (s_1^A + s_1^B )(s_2^A + s_2^B )}$ ,K 1 s 1 A s 1 B ( s 2 A + s 2 B ) ${K_1 s_1^A s_1^B (s_2^A + s_2^B )}$ , andK 2 ( s 1 A s 1 B ) ( s 2 A s 2 B ) ${K_2 (s_1^A s_1^B )(s_2^A s_2^B )}$ terms are considered, in addition to intra-binuclear interactions, such as effective ligand-field energy and exchange-like coupling. An exact treatment is carried out within the frame of the transfer matrix method, leading to a 4×4 matrix from which, we obtained the thermal evolution of the thermodynamic quantities. Several situations of model parameter values were tested, among which that of competing intra- and inter-molecular interactions, leading to the occurrence of (i) one-step spin transition, (ii) two-, three-, and four-step transitions, obtained with a reasonable number of parameters. To reproduce first-order phase transitions, we accounted for inter-chains interactions, treated in the mean-field approach. Hysteretic multi-step transitions, recalling experimental observations, are then achieved. Overall, the present model not only suggests new landscapes of interaction configurations between SCO molecules but also opens new avenues to tackle the complex behaviors often observed in the properties of SCO materials.
Collapse
Affiliation(s)
- Kamel Boukheddaden
- Université Paris-Saclay, CNRS-Université de Versailles Saint-Quentin-en-Yvelines Groupe d'Études de la Matière Condensée, UMR 8635, 45 Avenue des Etats Unis, 78035, Versailles, France
| | - Nour El Islam Belmouri
- Université Paris-Saclay, CNRS-Université de Versailles Saint-Quentin-en-Yvelines Groupe d'Études de la Matière Condensée, UMR 8635, 45 Avenue des Etats Unis, 78035, Versailles, France
| | - Nicolas di Scala
- Université Paris-Saclay, CNRS-Université de Versailles Saint-Quentin-en-Yvelines Groupe d'Études de la Matière Condensée, UMR 8635, 45 Avenue des Etats Unis, 78035, Versailles, France
| |
Collapse
|
2
|
Ndiaye M, Boukheddaden K. Pressure-induced multi-step and self-organized spin states in an electro-elastic model for spin-crossover solids. Phys Chem Chem Phys 2022; 24:12870-12889. [PMID: 35583047 DOI: 10.1039/d2cp01285e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spin transition materials are known to exhibit a rich variety of behaviors under several stimuli, among which pressure leads to major changes in their electronic and elastic properties. From an experimental point of view, thermal spin transitions under isotropic pressure showed transformations from (i) hysteretic to continuous transformations where the hysteresis width vanishes beyond some threshold pressure value; this is the conventional case. In several other cases very pathological and unexpected behaviours emerged, like (ii) persistent hysteresis under pressure; (iii) non-uniform behavior of the thermal hysteresis width which first increases with pressure and then decreases and vanishes at higher pressures; (iv) furthermore, double step transitions induced by pressure are also often obtained, where the pressure triggers the appearance of a plateau during the thermal transition, leading to two-step transitions, and finally (v) other non-conventional re-entrant transitions, where the thermal hysteresis vanishes at some pressure and then reappears at higher pressure values are also observed. In the present theoretical study, we investigate this problem with an electro-elastic description of the spin-crossover phenomenon by solving the Hamiltonian using a Monte Carlo technique. The pressure effect is here introduced directly in the lattice parameters, the elastic constants and ligand field energy. By considering spin state-dependent compressibility, we demonstrate that a large panel of experimental observations can be qualitatively described with this model. Among them, we quote (i) the conventional pressure effect decreasing the hysteresis width, (ii) the unconventional cases with pressure causing a non-monotonous behavior of the hysteresis width, (iii) re-entrant, as well as (iv) double step transitions accompanied with various types of spin state self-organization in the plateau regions.
Collapse
Affiliation(s)
- Mamadou Ndiaye
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, 45 Avenue des Etats Unis, 78035 Versailles, France. .,Département de Physique, Université Cheikh Anta Diop de Dakar, FST, BP 5005, Fann, Dakar, Senegal
| | - Kamel Boukheddaden
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, 45 Avenue des Etats Unis, 78035 Versailles, France.
| |
Collapse
|
3
|
Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The jungle of experimental behaviors of spin-crossover materials contains a tremendous number of unexpected behaviors, among which, the unsymmetrical hysteresis loops having different shapes on heating and cooling, that we often encounter in literature. Excluding an extra effect of crystallographic phase transitions, we study here these phenomena from the point of view of elastic modeling and we demonstrate that a simple model accounting for the bond lengths misfits between the high-spin and low-spin states is sufficient to describe the situation of unsymmetrical hysteresis showing plateaus at the transition only on cooling or on heating branches. The idea behind this effect relates to the existence of a discriminant elastic frustration in the lattice, which expresses only along the high-spin to low-spin transition or in the opposite side. The obtained two-step transitions showed characteristics of self-organization of the spin states under the form of stripes, which we explain as an emergence process of antagonist directional elastic interactions inside the lattice. The analysis of the spin state transformation inside the plateau on cooling in terms of two sublattices demonstrated that the elastic-driven self-organization of the spin states is accompanied with a symmetry breaking.
Collapse
|
4
|
Ishikawa R, Ueno S, Nifuku S, Horii Y, Iguchi H, Miyazaki Y, Nakano M, Hayami S, Kumagai S, Katoh K, Li ZY, Yamashita M, Kawata S. Simultaneous Spin-Crossover Transition and Conductivity Switching in a Dinuclear Iron(II) Coordination Compound Based on 7,7',8,8'-Tetracyano-p-quinodimethane. Chemistry 2020; 26:1278-1285. [PMID: 31670412 DOI: 10.1002/chem.201903934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Indexed: 11/08/2022]
Abstract
The reaction of Fe(OAc)2 and Hbpypz with neutral TCNQ results in the formation of [Fe2 (bpypz)2 (TCNQ)2 ](TCNQ)2 (1), in which Hbpypz=3,5-bis(2-pyridyl)pyrazole and TCNQ=7,7',8,8'-tetracyano-p-quinodimethane. Crystal packing of 1 with uncoordinated TCNQ and π-π stacking of bpypz- ligands produces an extended two-dimensional supramolecular coordination assembly. Temperature dependence of the dc magnetic susceptibility and heat capacity measurements indicate that 1 undergoes an abrupt spin crossover (SCO) with thermal spin transition temperatures of 339 and 337 K for the heating and cooling modes, respectively, resulting in a thermal hysteresis of 2 K. Remarkably, the temperature dependence of dc electrical transport exhibits a transition that coincides with thermal SCO, demonstrating the thermally induced magnetic and electrical bistability of 1, strongly correlating magnetism with electrical conductivity. This outstanding feature leads to thermally induced simultaneous switching of magnetism and electrical conductivity and a magnetoresistance effect.
Collapse
Affiliation(s)
- Ryuta Ishikawa
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shuya Ueno
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shoei Nifuku
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yoji Horii
- Research Center for Structural Thermodynamics, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yuji Miyazaki
- Research Center for Structural Thermodynamics, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Motohiro Nakano
- Research Center for Structural Thermodynamics, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Shinya Hayami
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Shohei Kumagai
- Department of Advanced Materials Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.,World Premier International Research Center Initiative, Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.,School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Satoshi Kawata
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|