1
|
Gou F, Liu J, Xiao C, Wu J. Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence. Diagnostics (Basel) 2024; 14:1472. [PMID: 39061610 PMCID: PMC11275417 DOI: 10.3390/diagnostics14141472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
With the improvement of economic conditions and the increase in living standards, people's attention in regard to health is also continuously increasing. They are beginning to place their hopes on machines, expecting artificial intelligence (AI) to provide a more humanized medical environment and personalized services, thus greatly expanding the supply and bridging the gap between resource supply and demand. With the development of IoT technology, the arrival of the 5G and 6G communication era, and the enhancement of computing capabilities in particular, the development and application of AI-assisted healthcare have been further promoted. Currently, research on and the application of artificial intelligence in the field of medical assistance are continuously deepening and expanding. AI holds immense economic value and has many potential applications in regard to medical institutions, patients, and healthcare professionals. It has the ability to enhance medical efficiency, reduce healthcare costs, improve the quality of healthcare services, and provide a more intelligent and humanized service experience for healthcare professionals and patients. This study elaborates on AI development history and development timelines in the medical field, types of AI technologies in healthcare informatics, the application of AI in the medical field, and opportunities and challenges of AI in the field of medicine. The combination of healthcare and artificial intelligence has a profound impact on human life, improving human health levels and quality of life and changing human lifestyles.
Collapse
Affiliation(s)
- Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Chunwen Xiao
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Wu Y, Li J, Wang X, Zhang Z, Zhao S. DECIDE: A decoupled semantic and boundary learning network for precise osteosarcoma segmentation by integrating multi-modality MRI. Comput Biol Med 2024; 174:108308. [PMID: 38581998 DOI: 10.1016/j.compbiomed.2024.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Automated Osteosarcoma Segmentation in Multi-modality MRI (AOSMM) holds clinical significance for effective tumor evaluation and treatment planning. However, the precision of AOSMM is challenged by the diverse characteristics of multi-modality MRI and the inherent heterogeneity and boundary ambiguity of osteosarcoma. While numerous methods have made significant strides in automated osteosarcoma segmentation, they primarily focused on the use of a single MRI modality and overlooked the potential benefits of integrating complementary information from other MRI modalities. Furthermore, they did not adequately model the long-range dependencies of complex tumor features, which may lead to insufficiently discriminative feature representations. To this end, we propose a decoupled semantic and boundary learning network (DECIDE) to achieve precise AOSMM with three functional modules. The Multi-modality Feature Fusion and Recalibration (MFR) module adaptively fuses and recalibrates multi-modality features by exploiting their channel-wise dependencies to compute low-rank attention weights for effectively aggregating useful information from different MRI modalities, which promotes complementary learning between multi-modality MRI and enables a more comprehensive tumor characterization. The Lesion Attention Enhancement (LAE) module employs spatial and channel attention mechanisms to capture global contextual dependencies over local features, significantly enhancing the discriminability and representational capacity of intricate tumor features. The Boundary Context Aggregation (BCA) module further enhances semantic representations by utilizing boundary information for effective context aggregation while also ensuring intra-class consistency in cases of boundary ambiguity. Substantial experiments demonstrate that DECIDE achieves exceptional performance in osteosarcoma segmentation, surpassing state-of-the-art methods in terms of accuracy and stability.
Collapse
Affiliation(s)
- Yinhao Wu
- Department of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianqi Li
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinxin Wang
- Department of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhaohui Zhang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Shen Zhao
- Department of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Li W, Gou F, Wu J. Artificial intelligence auxiliary diagnosis and treatment system for breast cancer in developing countries. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:395-413. [PMID: 38189731 DOI: 10.3233/xst-230194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND In many developing countries, a significant number of breast cancer patients are unable to receive timely treatment due to a large population base, high patient numbers, and limited medical resources. OBJECTIVE This paper proposes a breast cancer assisted diagnosis system based on electronic medical records. The goal of this system is to address the limitations of existing systems, which primarily rely on structured electronic records and may miss crucial information stored in unstructured records. METHODS The proposed approach is a breast cancer assisted diagnosis system based on electronic medical records. The system utilizes breast cancer enhanced convolutional neural networks with semantic initialization filters (BC-INIT-CNN). It extracts highly relevant tumor markers from unstructured medical records to aid in breast cancer staging diagnosis and effectively utilizes the important information present in unstructured records. RESULTS The model's performance is assessed using various evaluation metrics. Such as accuracy, ROC curves, and Precision-Recall curves. Comparative analysis demonstrates that the BC-INIT-CNN model outperforms several existing methods in terms of accuracy and computational efficiency. CONCLUSIONS The proposed breast cancer assisted diagnosis system based on BC-INIT-CNN showcases the potential to address the challenges faced by developing countries in providing timely treatment to breast cancer patients. By leveraging unstructured medical records and extracting relevant tumor markers, the system enables accurate staging diagnosis and enhances the utilization of valuable information.
Collapse
Affiliation(s)
- Wenxiu Li
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton VIC, Australia
| |
Collapse
|
4
|
He Z, Liu J, Gou F, Wu J. An Innovative Solution Based on TSCA-ViT for Osteosarcoma Diagnosis in Resource-Limited Settings. Biomedicines 2023; 11:2740. [PMID: 37893113 PMCID: PMC10604772 DOI: 10.3390/biomedicines11102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Identifying and managing osteosarcoma pose significant challenges, especially in resource-constrained developing nations. Advanced diagnostic methods involve isolating the nucleus from cancer cells for comprehensive analysis. However, two main challenges persist: mitigating image noise during the capture and transmission of cellular sections, and providing an efficient, accurate, and cost-effective solution for cell nucleus segmentation. To tackle these issues, we introduce the Twin-Self and Cross-Attention Vision Transformer (TSCA-ViT). This pioneering AI-based system employs a directed filtering algorithm for noise reduction and features an innovative transformer architecture with a twin attention mechanism for effective segmentation. The model also incorporates cross-attention-enabled skip connections to augment spatial information. We evaluated our method on a dataset of 1000 osteosarcoma pathology slide images from the Second People's Hospital of Huaihua, achieving a remarkable average precision of 97.7%. This performance surpasses traditional methodologies. Furthermore, TSCA-ViT offers enhanced computational efficiency owing to its fewer parameters, which results in reduced time and equipment costs. These findings underscore the superior efficacy and efficiency of TSCA-ViT, offering a promising approach for addressing the ongoing challenges in osteosarcoma diagnosis and treatment, particularly in settings with limited resources.
Collapse
Affiliation(s)
- Zengxiao He
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Rich JM, Bhardwaj LN, Shah A, Gangal K, Rapaka MS, Oberai AA, Fields BKK, Matcuk GR, Duddalwar VA. Deep learning image segmentation approaches for malignant bone lesions: a systematic review and meta-analysis. FRONTIERS IN RADIOLOGY 2023; 3:1241651. [PMID: 37614529 PMCID: PMC10442705 DOI: 10.3389/fradi.2023.1241651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Introduction Image segmentation is an important process for quantifying characteristics of malignant bone lesions, but this task is challenging and laborious for radiologists. Deep learning has shown promise in automating image segmentation in radiology, including for malignant bone lesions. The purpose of this review is to investigate deep learning-based image segmentation methods for malignant bone lesions on Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron-Emission Tomography/CT (PET/CT). Method The literature search of deep learning-based image segmentation of malignant bony lesions on CT and MRI was conducted in PubMed, Embase, Web of Science, and Scopus electronic databases following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 41 original articles published between February 2017 and March 2023 were included in the review. Results The majority of papers studied MRI, followed by CT, PET/CT, and PET/MRI. There was relatively even distribution of papers studying primary vs. secondary malignancies, as well as utilizing 3-dimensional vs. 2-dimensional data. Many papers utilize custom built models as a modification or variation of U-Net. The most common metric for evaluation was the dice similarity coefficient (DSC). Most models achieved a DSC above 0.6, with medians for all imaging modalities between 0.85-0.9. Discussion Deep learning methods show promising ability to segment malignant osseous lesions on CT, MRI, and PET/CT. Some strategies which are commonly applied to help improve performance include data augmentation, utilization of large public datasets, preprocessing including denoising and cropping, and U-Net architecture modification. Future directions include overcoming dataset and annotation homogeneity and generalizing for clinical applicability.
Collapse
Affiliation(s)
- Joseph M. Rich
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lokesh N. Bhardwaj
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Aman Shah
- Department of Applied Biostatistics and Epidemiology, University of Southern California, Los Angeles, CA, United States
| | - Krish Gangal
- Bridge UnderGrad Science Summer Research Program, Irvington High School, Fremont, CA, United States
| | - Mohitha S. Rapaka
- Department of Biology, University of Texas at Austin, Austin, TX, United States
| | - Assad A. Oberai
- Department of Aerospace and Mechanical Engineering Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Brandon K. K. Fields
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - George R. Matcuk
- Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vinay A. Duddalwar
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
- Department of Radiology, USC Radiomics Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Lv B, Liu F, Li Y, Nie J, Gou F, Wu J. Artificial Intelligence-Aided Diagnosis Solution by Enhancing the Edge Features of Medical Images. Diagnostics (Basel) 2023; 13:1063. [PMID: 36980371 PMCID: PMC10047640 DOI: 10.3390/diagnostics13061063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive. The manual screening of medical images is time-consuming and laborious, and computer technology is now being introduced to aid in diagnosis. Due to a large amount of noise and blurred lesion edges in osteosarcoma MRI images, high-precision segmentation methods require large computational resources and are difficult to use in developing countries with limited conditions. Therefore, this study proposes an artificial intelligence-aided diagnosis scheme by enhancing image edge features. First, a threshold screening filter (TSF) was used to pre-screen the MRI images to filter redundant data. Then, a fast NLM algorithm was introduced for denoising. Finally, a segmentation method with edge enhancement (TBNet) was designed to segment the pre-processed images by fusing Transformer based on the UNet network. TBNet is based on skip-free connected U-Net and includes a channel-edge cross-fusion transformer and a segmentation method with a combined loss function. This solution optimizes diagnostic efficiency and solves the segmentation problem of blurred edges, providing more help and reference for doctors to diagnose osteosarcoma. The results based on more than 4000 osteosarcoma MRI images show that our proposed method has a good segmentation effect and performance, with Dice Similarity Coefficient (DSC) reaching 0.949, and show that other evaluation indexes such as Intersection of Union (IOU) and recall are better than other methods.
Collapse
Affiliation(s)
- Baolong Lv
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Feng Liu
- School of Information Engineering, Shandong Youth University of Political Science, Jinan 250102, China
- New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Jinan 250103, China
| | - Yulin Li
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Jianhua Nie
- Shandong Provincial People’s Government Administration Guarantee Center, Jinan 250011, China;
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
7
|
Li S, Que Y, Yang R, He P, Xu S, Hu Y. Construction of Osteosarcoma Diagnosis Model by Random Forest and Artificial Neural Network. J Pers Med 2023; 13:jpm13030447. [PMID: 36983630 PMCID: PMC10056981 DOI: 10.3390/jpm13030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Osteosarcoma accounts for 28% of primary bone malignancies in adults and up to 56% in children and adolescents (<20 years). However, early diagnosis and treatment are still inadequate, and new improvements are still needed. Missed diagnoses exist due to fewer traditional diagnostic methods, and clinical symptoms are often already present before diagnosis. This study aimed to develop novel and efficient predictive models for the diagnosis of osteosarcoma and to identify potential targets for exploring osteosarcoma markers. First, osteosarcoma and normal tissue expression microarray datasets were downloaded from the Gene Expression Omnibus (GEO). Then we screened the differentially expressed genes (DEGs) in the osteosarcoma and normal groups in the training group. Next, in order to explore the biologically relevant role of DEGs, Metascape and enrichment analyses were also performed on DEGs. The “randomForest” and “neuralnet” packages in R software were used to select representative genes and construct diagnostic models for osteosarcoma. The next step is to validate the model of the artificial neural network. Then, we performed an immune infiltration analysis by using the training set data. Finally, we constructed a prognostic model using representative genes for prognostic analysis. The copy number of osteosarcoma was also analyzed. A random forest classifier identified nine representative genes (ANK1, TGFBR3, RSF21, HSPB8, ITGA7, RHD, AASS, GREM2, NFASC). HSPB8, RHD, AASS, and NFASC were genes we identified that have not been previously reported to be associated with osteosarcoma. The osteosarcoma diagnostic model we constructed has good performance with areas under the curves (AUCs) of 1 and 0.987 in the training and validation groups, respectively. This study opens new horizons for the early diagnosis of osteosarcoma and provides representative markers for the future treatment of osteosarcoma. This is the first study to pioneer the establishment of a genetic diagnosis model for osteosarcoma and advance the development of osteosarcoma diagnosis and treatment.
Collapse
|
8
|
Zhan X, Liu J, Long H, Zhu J, Tang H, Gou F, Wu J. An Intelligent Auxiliary Framework for Bone Malignant Tumor Lesion Segmentation in Medical Image Analysis. Diagnostics (Basel) 2023; 13:223. [PMID: 36673032 PMCID: PMC9858155 DOI: 10.3390/diagnostics13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive, with poor treatment outcomes and prognosis. Rapid and accurate diagnosis is crucial for limb salvage and increasing the survival rate. There is a lack of research on deep learning to segment bone malignant tumor lesions in medical images with complex backgrounds and blurred boundaries. Therefore, we propose a new intelligent auxiliary framework for the medical image segmentation of bone malignant tumor lesions, which consists of a supervised edge-attention guidance segmentation network (SEAGNET). We design a boundary key points selection module to supervise the learning of edge attention in the model to retain fine-grained edge feature information. We precisely locate malignant tumors by instance segmentation networks while extracting feature maps of tumor lesions in medical images. The rich contextual-dependent information in the feature map is captured by mixed attention to better understand the uncertainty and ambiguity of the boundary, and edge attention learning is used to guide the segmentation network to focus on the fuzzy boundary of the tumor region. We implement extensive experiments on real-world medical data to validate our model. It validates the superiority of our method over the latest segmentation methods, achieving the best performance in terms of the Dice similarity coefficient (0.967), precision (0.968), and accuracy (0.996). The results prove the important contribution of the framework in assisting doctors to improve the accuracy of diagnosis and clinical efficiency.
Collapse
Affiliation(s)
- Xiangbing Zhan
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Huiyun Long
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Haoyu Tang
- The First People’s Hospital of Huaihua, Huaihua 418000, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
9
|
Tang H, Huang H, Liu J, Zhu J, Gou F, Wu J. AI-Assisted Diagnosis and Decision-Making Method in Developing Countries for Osteosarcoma. Healthcare (Basel) 2022; 10:2313. [PMID: 36421636 PMCID: PMC9690527 DOI: 10.3390/healthcare10112313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma is a malignant tumor derived from primitive osteogenic mesenchymal cells, which is extremely harmful to the human body and has a high mortality rate. Early diagnosis and treatment of this disease is necessary to improve the survival rate of patients, and MRI is an effective tool for detecting osteosarcoma. However, due to the complex structure and variable location of osteosarcoma, cancer cells are highly heterogeneous and prone to aggregation and overlap, making it easy for doctors to inaccurately predict the area of the lesion. In addition, in developing countries lacking professional medical systems, doctors need to examine mass of osteosarcoma MRI images of patients, which is time-consuming and inefficient, and may result in misjudgment and omission. For the sake of reducing labor cost and improve detection efficiency, this paper proposes an Attention Condenser-based MRI image segmentation system for osteosarcoma (OMSAS), which can help physicians quickly locate the lesion area and achieve accurate segmentation of the osteosarcoma tumor region. Using the idea of AttendSeg, we constructed an Attention Condenser-based residual structure network (ACRNet), which greatly reduces the complexity of the structure and enables smaller hardware requirements while ensuring the accuracy of image segmentation. The model was tested on more than 4000 samples from two hospitals in China. The experimental results demonstrate that our model has higher efficiency, higher accuracy and lighter structure for osteosarcoma MRI image segmentation compared to other existing models.
Collapse
Affiliation(s)
- Haojun Tang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Hui Huang
- The First People’s Hospital of Huaihua, Huaihua 418000, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Liu F, Zhu J, Lv B, Yang L, Sun W, Dai Z, Gou F, Wu J. Auxiliary Segmentation Method of Osteosarcoma MRI Image Based on Transformer and U-Net. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9990092. [PMID: 36419505 PMCID: PMC9678467 DOI: 10.1155/2022/9990092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/28/2023]
Abstract
One of the most prevalent malignant bone tumors is osteosarcoma. The diagnosis and treatment cycle are long and the prognosis is poor. It takes a lot of time to manually identify osteosarcoma from osteosarcoma magnetic resonance imaging (MRI). Medical image processing technology has greatly alleviated the problems faced by medical diagnoses. However, MRI images of osteosarcoma are characterized by high noise and blurred edges. The complex features increase the difficulty of lesion area identification. Therefore, this study proposes an osteosarcoma MRI image segmentation method (OSTransnet) based on Transformer and U-net. This technique primarily addresses the issues of fuzzy tumor edge segmentation and overfitting brought on by data noise. First, we optimize the dataset by changing the precise spatial distribution of noise and the data-increment image rotation process. The tumor is then segmented based on the model of U-Net and Transformer with edge improvement. It compensates for the limitations of U-semantic Net by using channel-based transformers. Finally, we also add an edge enhancement module (BAB) and a combined loss function to improve the performance of edge segmentation. The method's accuracy and stability are demonstrated by the detection and training results based on more than 4,000 MRI images of osteosarcoma, which also demonstrate how well the method works as an adjunct to clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Feng Liu
- School of Information Engineering, Shandong Youth University of Political Science, Jinan, Shandong, China
- New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Jinan 250103, China
| | - Jun Zhu
- The First People's Hospital of Huaihua, Huaihua 418000, Hunan, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Baolong Lv
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan, China
| | - Lei Yang
- School of Computer Science and Technology, Shandong Janzhu University, Jinan, China
| | - Wenyan Sun
- School of Information Engineering, Shandong Youth University of Political Science, Jinan, Shandong, China
| | - Zhehao Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Gou F, Liu J, Zhu J, Wu J. A Multimodal Auxiliary Classification System for Osteosarcoma Histopathological Images Based on Deep Active Learning. Healthcare (Basel) 2022; 10:2189. [PMID: 36360530 PMCID: PMC9690420 DOI: 10.3390/healthcare10112189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Histopathological examination is an important criterion in the clinical diagnosis of osteosarcoma. With the improvement of hardware technology and computing power, pathological image analysis systems based on artificial intelligence have been widely used. However, classifying numerous intricate pathology images by hand is a tiresome task for pathologists. The lack of labeling data makes the system costly and difficult to build. This study constructs a classification assistance system (OHIcsA) based on active learning (AL) and a generative adversarial network (GAN). The system initially uses a small, labeled training set to train the classifier. Then, the most informative samples from the unlabeled images are selected for expert annotation. To retrain the network, the final chosen images are added to the initial labeled dataset. Experiments on real datasets show that our proposed method achieves high classification performance with an AUC value of 0.995 and an accuracy value of 0.989 using a small amount of labeled data. It reduces the cost of building a medical system. Clinical diagnosis can be aided by the system's findings, which can also increase the effectiveness and verifiable accuracy of doctors.
Collapse
Affiliation(s)
- Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
12
|
Auxiliary Segmentation Method of Osteosarcoma in MRI Images Based on Denoising and Local Enhancement. Healthcare (Basel) 2022; 10:healthcare10081468. [PMID: 36011123 PMCID: PMC9408522 DOI: 10.3390/healthcare10081468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is a bone tumor which is malignant. There are many difficulties when doctors manually identify patients’ MRI images to complete the diagnosis. The osteosarcoma in MRI images is very complex, making its recognition and segmentation resource-consuming. Automatic osteosarcoma area segmentation can solve these problems to a certain extent. However, existing studies usually fail to balance segmentation accuracy and efficiency. They are either sensitive to noise with low accuracy or time-consuming. So we propose an auxiliary segmentation method based on denoising and local enhancement. The method first optimizes the osteosarcoma images, including removing noise using the Edge Enhancement based Transformer for Medical Image Denoising (Eformer) and using a non-parameter method to localize and enhance the tumor region in MRI images. Osteosarcoma was then segmented by Deep Feature Aggregation for Real-Time Semantic Segmentation (DFANet). Our method achieves impressive segmentation accuracy. Moreover, it is efficient in both time and space. It can provide information about the location and extent of the osteosarcoma as a basis for further diagnosis.
Collapse
|
13
|
Wu J, Zhou L, Gou F, Tan Y. A Residual Fusion Network for Osteosarcoma MRI Image Segmentation in Developing Countries. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7285600. [PMID: 35965771 PMCID: PMC9365532 DOI: 10.1155/2022/7285600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Among primary bone cancers, osteosarcoma is the most common, peaking between the ages of a child's rapid bone growth and adolescence. The diagnosis of osteosarcoma requires observing the radiological appearance of the infected bones. A common approach is MRI, but the manual diagnosis of MRI images is prone to observer bias and inaccuracy and is rather time consuming. The MRI images of osteosarcoma contain semantic messages in several different resolutions, which are often ignored by current segmentation techniques, leading to low generalizability and accuracy. In the meantime, the boundaries between osteosarcoma and bones or other tissues are sometimes too ambiguous to separate, making it a challenging job for inexperienced doctors to draw a line between them. In this paper, we propose using a multiscale residual fusion network to handle the MRI images. We placed a novel subnetwork after the encoders to exchange information between the feature maps of different resolutions, to fuse the information they contain. The outputs are then directed to both the decoders and a shape flow block, used for improving the spatial accuracy of the segmentation map. We tested over 80,000 osteosarcoma MRI images from the PET-CT center of a well-known hospital in China. Our approach can significantly improve the effectiveness of the semantic segmentation of osteosarcoma images. Our method has higher F1, DSC, and IOU compared with other models while maintaining the number of parameters and FLOPS.
Collapse
Affiliation(s)
- Jia Wu
- School of Computer Science and Engineering, Central South University, Chang Sha 410083, China
- Research Center for Artificial Intelligence, Monash University, Clayton Vic 3800, Melbourne, Australia
| | - Luting Zhou
- School of Computer Science and Engineering, Central South University, Chang Sha 410083, China
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Chang Sha 410083, China
| | - Yanlin Tan
- PET-CT Center, The Second Xiangya Hospital of Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Wu J, Liu Z, Gou F, Zhu J, Tang H, Zhou X, Xiong W. BA-GCA Net: Boundary-Aware Grid Contextual Attention Net in Osteosarcoma MRI Image Segmentation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3881833. [PMID: 35942441 PMCID: PMC9356797 DOI: 10.1155/2022/3881833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022]
Abstract
Osteosarcoma is one of the most common bone tumors that occurs in adolescents. Doctors often use magnetic resonance imaging (MRI) through biosensors to diagnose and predict osteosarcoma. However, a number of osteosarcoma MRI images have the problem of the tumor shape boundary being vague, complex, or irregular, which causes doctors to encounter difficulties in diagnosis and also makes some deep learning methods lose segmentation details as well as fail to locate the region of the osteosarcoma. In this article, we propose a novel boundary-aware grid contextual attention net (BA-GCA Net) to solve the problem of insufficient accuracy in osteosarcoma MRI image segmentation. First, a novel grid contextual attention (GCA) is designed to better capture the texture details of the tumor area. Then the statistical texture learning block (STLB) and the spatial transformer block (STB) are integrated into the network to improve its ability to extract statistical texture features and locate tumor areas. Over 80,000 MRI images of osteosarcoma from the Second Xiangya Hospital are adopted as a dataset for training, testing, and ablation studies. Results show that our proposed method achieves higher segmentation accuracy than existing methods with only a slight increase in the number of parameters and computational complexity.
Collapse
Affiliation(s)
- Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton VIC 3800, Australia
- The First People's Hospital of Huaihua, Huaihua, Hunan, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assis-10 Tance, Hunan University of Medicine, Changsha, China
| | - Zikang Liu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jun Zhu
- The First People's Hospital of Huaihua, Huaihua, Hunan, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assis-10 Tance, Hunan University of Medicine, Changsha, China
| | - Haoyu Tang
- The First People's Hospital of Huaihua, Huaihua, Hunan, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assis-10 Tance, Hunan University of Medicine, Changsha, China
| | - Xian Zhou
- Jiangxi University of Chinese Medicine, Nanchang 330004, JiangXi, China
| | - Wangping Xiong
- Jiangxi University of Chinese Medicine, Nanchang 330004, JiangXi, China
| |
Collapse
|
15
|
Wu J, Guo Y, Gou F, Dai Z. A medical assistant segmentation method for MRI images of osteosarcoma based on DecoupleSegNet. INT J INTELL SYST 2022. [DOI: 10.1002/int.22949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia Wu
- School of Computer Science and Engineering Central South University Changsha China
- Research Center for Artificial Intelligence Monash University Melbourne, Clayton Victoria Australia
| | - Yuxuan Guo
- School of Computer Science and Engineering Central South University Changsha China
| | - Fangfang Gou
- School of Computer Science and Engineering Central South University Changsha China
| | - Zhehao Dai
- Department of Spine Surgery, The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
16
|
Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images. MATHEMATICS 2022. [DOI: 10.3390/math10122099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteosarcoma is a malignant osteosarcoma that is extremely harmful to human health. Magnetic resonance imaging (MRI) technology is one of the commonly used methods for the imaging examination of osteosarcoma. Due to the large amount of osteosarcoma MRI image data and the complexity of detection, manual identification of osteosarcoma in MRI images is a time-consuming and labor-intensive task for doctors, and it is highly subjective, which can easily lead to missed and misdiagnosed problems. AI medical image-assisted diagnosis alleviates this problem. However, the brightness of MRI images and the multi-scale of osteosarcoma make existing studies still face great challenges in the identification of tumor boundaries. Based on this, this study proposed a prior guidance-based assisted segmentation method for MRI images of osteosarcoma, which is based on the few-shot technique for tumor segmentation and fine fitting. It not only solves the problem of multi-scale tumor localization, but also greatly improves the recognition accuracy of tumor boundaries. First, we preprocessed the MRI images using prior generation and normalization algorithms to reduce model performance degradation caused by irrelevant regions and high-level features. Then, we used a prior-guided feature abdominal muscle network to perform small-sample segmentation of tumors of different sizes based on features in the processed MRI images. Finally, using more than 80,000 MRI images from the Second Xiangya Hospital for experiments, the DOU value of the method proposed in this paper reached 0.945, which is at least 4.3% higher than other models in the experiment. We showed that our method specifically has higher prediction accuracy and lower resource consumption.
Collapse
|