1
|
Al-Betar MA, Awadallah MA, Makhadmeh SN, Alyasseri ZAA, Al-Naymat G, Mirjalili S. Marine Predators Algorithm: A Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:3405-3435. [PMID: 37260911 PMCID: PMC10115392 DOI: 10.1007/s11831-023-09912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/05/2023] [Indexed: 06/02/2023]
Abstract
Marine Predators Algorithm (MPA) is a recent nature-inspired optimizer stemmed from widespread foraging mechanisms based on Lévy and Brownian movements in ocean predators. Due to its superb features, such as derivative-free, parameter-less, easy-to-use, flexible, and simplicity, MPA is quickly evolved for a wide range of optimization problems in a short period. Therefore, its impressive characteristics inspire this review to analyze and discuss the primary MPA research studies established. In this review paper, the growth of the MPA is analyzed based on 102 research papers to show its powerful performance. The MPA inspirations and its theoretical concepts are also illustrated, focusing on its convergence behaviour. Thereafter, the MPA versions suggested improving the MPA behaviour on connecting the search space shape of real-world optimization problems are analyzed. A plethora and diverse optimization applications have been addressed, relying on MPA as the main solver, which is also described and organized. In addition, a critical discussion about the convergence behaviour and the main limitation of MPA is given. The review is end-up highlighting the main findings of this survey and suggests some possible MPA-related improvements and extensions that can be carried out in the future.
Collapse
Affiliation(s)
- Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
- Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Irbid, Jordan
| | - Mohammed A. Awadallah
- Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Zaid Abdi Alkareem Alyasseri
- Information Technology Research and Development Center (ITRDC), University of Kufa, An Najaf, 54001 Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbalä’, Iraq
| | - Ghazi Al-Naymat
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Seyedali Mirjalili
- Center for Artificial Intelligence Research and Optimization, Torrens University, Adelaide, Australia
| |
Collapse
|
2
|
Rai R, Dhal KG, Das A, Ray S. An Inclusive Survey on Marine Predators Algorithm: Variants and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:3133-3172. [PMID: 36855410 PMCID: PMC9951854 DOI: 10.1007/s11831-023-09897-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
Marine Predators Algorithm (MPA) is the existing population-based meta-heuristic algorithms that falls under the category of Nature-Inspired Optimization Algorithm (NIOA) enthused by the foraging actions of the marine predators that principally pursues Levy or Brownian approach as its foraging strategy. Furthermore, it employs the optimal encounter rate stratagem involving both the predator as well as prey. Since its introduction by Faramarzi in the year 2020, MPA has gained enormous popularity and has been employed in numerous application areas ranging from Mathematical and Engineering Optimization problems to Fog Computing to Image Processing to Photovoltaic System to Wind-Solar Generation System for resolving continuous optimization problems. Such huge interest from the research fraternity or the massive recognition of MPA is due to several factors such as its simplicity, ease of application, realistic execution time, superior convergence acceleration rate, soaring effectiveness, its ability to unravel continuous, multi-objective and binary problems when compared with other renowned optimization algorithms existing in the literature. This paper offers a detailed summary of the Marine Predators Algorithm (MPA) and its variants. Furthermore, the applications of MPA in a number of spheres such as Image processing, classification, electrical power system, Photovoltaic models, structural damage detection, distribution networks, engineering applications, Task Scheduling, optimization problems etc., are illustrated. To conclude, the paper highlights and thereby advocates few of the potential future research directions for MPA.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Sikkim, India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Arunita Das
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Swarnajit Ray
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal India
| |
Collapse
|
3
|
Semisupervised Bacterial Heuristic Feature Selection Algorithm for High-Dimensional Classification with Missing Labels. INT J INTELL SYST 2023. [DOI: 10.1155/2023/4196920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Feature selection is a crucial method for discovering relevant features in high-dimensional data. However, most studies primarily focus on completely labeled data, ignoring the frequent occurrence of missing labels in real-world problems. To address high-dimensional and label-missing problems in data classification simultaneously, we proposed a semisupervised bacterial heuristic feature selection algorithm. To track the label-missing problem, a k-nearest neighbor semisupervised learning strategy is designed to reconstruct missing labels. In addition, the bacterial heuristic algorithm is improved using hierarchical population initialization, dynamic learning, and elite population evolution strategies to enhance the search capacity for various feature combinations. To verify the effectiveness of the proposed algorithm, three groups of comparison experiments based on eight datasets are employed, including two traditional feature selection methods, four bacterial heuristic feature selection algorithms, and two swarm-based heuristic feature selection algorithms. Experimental results demonstrate that the proposed algorithm has obvious advantages in terms of classification accuracy and selected feature numbers.
Collapse
|
4
|
Zhang S, Wang S, Dong R, Zhang K, Zhang X. A Multi-strategy Improved Outpost and Differential Evolution Mutation Marine Predators Algorithm for Global Optimization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:1-24. [PMID: 36845881 PMCID: PMC9937532 DOI: 10.1007/s13369-023-07683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/29/2023] [Indexed: 02/20/2023]
Abstract
Marine Predators Algorithm (MPA) is a recent efficient metaheuristic algorithm that is enlightened by the biological behavior of ocean predators and prey. This algorithm simulates the Levy and Brownian movements of prevalent foraging strategy and has been applied to many complex optimization problems. However, the algorithm has defects such as a low diversity of the solutions, ease into the local optimal solutions, and decreasing convergence speed in dealing with complex problems. A modified version of this algorithm called ODMPA is proposed based on the tent map, the outpost mechanism, and the differential evolution mutation with simulated annealing (DE-SA) mechanism. The tent map and DE-SA mechanism are added to enhance the exploration capability of MPA by increasing the diversity of the search agents, and the outpost mechanism is mainly used to improve the convergence speed of MPA. To validate the outstanding performance of the ODMPA, a series of global optimization problems are selected as the test sets, including the standard IEEE CEC2014 benchmark functions, which are the authoritative test set, three well-known engineering problems, and photovoltaic model parameters tasks. Compared with some famous algorithms, the results reveal that ODMPA has achieved better performance than its counterparts in CEC2014 benchmark functions. And in solving real-world optimization problems, ODMPA could get higher accuracy than other metaheuristic algorithms. These practical results demonstrate that the mechanisms introduced positively affect the original MPA, and the proposed ODMPA can be a widely effective tool in tackling many optimization problems.
Collapse
Affiliation(s)
- Shuhan Zhang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Shengsheng Wang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Ruyi Dong
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, 132022 China
| | - Kai Zhang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
| | - Xiaohui Zhang
- 2012 Laboratories, Huawei Technology Co., Ltd., Beijing, 100095 China
| |
Collapse
|
5
|
Qin X, Zhang S, Dong X, Zhan Y, Wang R, Xu D. China's carbon dioxide emission forecast based on improved marine predator algorithm and multi-kernel support vector regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5730-5748. [PMID: 35982382 PMCID: PMC9387893 DOI: 10.1007/s11356-022-22302-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 05/27/2023]
Abstract
Global warming has constituted a major global problem. Carbon dioxide emissions from the burning of fossil fuels are the main cause of global warming. Therefore, carbon dioxide emission forecasting has attracted widespread attention. Aiming at the problem of carbon dioxide emissions forecasting, this paper proposes a new hybrid forecasting model of carbon dioxide emissions, which combines the marine predator algorithm (MPA) and multi-kernel support vector regression. For further strengthening the prediction accuracy, a novel variant of MPA is proposed, called EGMPA, which introduces the elite opposition-based learning strategy and the golden sine algorithm into MPA. Algorithm test results show that EGMPA can effectively improve the convergence speed and optimization accuracy. The carbon dioxide emission data of China from 1965 to 2020 are taken as the research objects. Root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of the proposed model. The proposed multi-kernel support vector regression model is used to forecast China's carbon dioxide emissions during the "14th Five-Year Plan" period. The results show that the proposed model has RMSE of 37.43 Mt, MAE of 30.63 Mt, and MAPE of 0.32%, which significantly improves the prediction accuracy and can accurately and effectively predict China's carbon dioxide emissions. During the "14th Five-Year Plan" period, China's carbon dioxide emissions will continue to show an increasing trend, but the growth rate will slow down significantly.
Collapse
Affiliation(s)
- Xiwen Qin
- School of Mathematics and Statistics, Changchun University of Technology, No. 2055 Yan'an Street, Chaoyang District, Changchun, 130012, China.
- Graduate School, Changchun University of Technology, No. 2055 Yan'an Street, Chaoyang District, Changchun, 130012, China.
| | - Siqi Zhang
- School of Mathematics and Statistics, Changchun University of Technology, No. 2055 Yan'an Street, Chaoyang District, Changchun, 130012, China
| | - Xiaogang Dong
- School of Mathematics and Statistics, Changchun University of Technology, No. 2055 Yan'an Street, Chaoyang District, Changchun, 130012, China
| | - Yichang Zhan
- School of Mathematics and Statistics, Changchun University of Technology, No. 2055 Yan'an Street, Chaoyang District, Changchun, 130012, China
| | - Rui Wang
- School of Mathematics and Statistics, Changchun University of Technology, No. 2055 Yan'an Street, Chaoyang District, Changchun, 130012, China
| | - Dingxin Xu
- School of Mathematics and Statistics, Changchun University of Technology, No. 2055 Yan'an Street, Chaoyang District, Changchun, 130012, China
| |
Collapse
|
6
|
An Algebraic Approach to Clustering and Classification with Support Vector Machines. MATHEMATICS 2022. [DOI: 10.3390/math10010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this note, we propose a novel classification approach by introducing a new clustering method, which is used as an intermediate step to discover the structure of a data set. The proposed clustering algorithm uses similarities and the concept of a clique to obtain clusters, which can be used with different strategies for classification. This approach also reduces the size of the training data set. In this study, we apply support vector machines (SVMs) after obtaining clusters with the proposed clustering algorithm. The proposed clustering algorithm is applied with different strategies for applying SVMs. The results for several real data sets show that the performance is comparable with the standard SVM while reducing the size of the training data set and also the number of support vectors.
Collapse
|
7
|
|
8
|
An Improved Equilibrium Optimizer Algorithm and Its Application in LSTM Neural Network. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An improved equilibrium optimizer (EO) algorithm is proposed in this paper to address premature and slow convergence. Firstly, a highly stochastic chaotic mechanism is adopted to initialize the population for range expansion. Secondly, the capability to conduct global search to jump out of local optima is enhanced by assigning adaptive weights and setting adaptive convergence factors. In addition 25 classical benchmark functions are used to validate the algorithm. As revealed by the analysis of the accuracy, speed, and stability of convergence, the IEO algorithm proposed in this paper significantly outperforms other meta-heuristic algorithms. In practice, the distribution is asymmetric because most logging data are unlabeled. Traditional classification models have difficulty in accurately predicting the location of oil layer. In this paper, the oil layers related to oil exploration are predicted using long short-term memory (LSTM) networks. Due to the large amount of data used, however, it is difficult to adjust the parameters. For this reason, an improved equilibrium optimizer algorithm (IEO) is applied to optimize the parameters of LSTM for improved performance, while the effective IEO-LSTM is applied for oil layer prediction. As indicated by the results, the proposed model outperforms the current popular optimization algorithms including particle swarm algorithm PSO and genetic algorithm GA in terms of accuracy, absolute error, root mean square error and mean absolute error.
Collapse
|