1
|
Ahmed R, Calandra R, Marvi H. Learning to Control a Three-Dimensional Ferrofluidic Robot. Soft Robot 2024; 11:218-229. [PMID: 37870771 DOI: 10.1089/soro.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In recent years, ferrofluids have found increased popularity as a material for medical applications, such as ocular surgery, gastrointestinal surgery, and cancer treatment, among others. Ferrofluidic robots are multifunctional and scalable, exhibit fluid properties, and can be controlled remotely; thus, they are particularly advantageous for such medical tasks. Previously, ferrofluidic robot control has been achieved via the manipulation of handheld permanent magnets or in current-controlled electromagnetic fields resulting in two-dimensional position and shape control and three-dimensional (3D) coupled position-shape or position-only control. Control of ferrofluidic liquid droplet robots poses a unique challenge where model-based control has been shown to be computationally limiting. Thus, in this study, a model-free control method is chosen, and it is shown that the task of learning optimal control parameters for ferrofluidic robot control can be performed using machine learning. Particularly, we explore the use of Bayesian optimization to find optimal controller parameters for 3D pose control of a ferrofluid droplet: its centroid position, stretch direction, and stretch radius. We demonstrate that the position, stretch direction, and stretch radius of a ferrofluid droplet can be independently controlled in 3D with high accuracy and precision, using a simple control approach. Finally, we use ferrofluidic robots to perform pick-and-place, a lab-on-a-chip pH test, and electrical switching, in 3D settings. The purpose of this research is to expand the potential of ferrofluidic robots by introducing full pose control in 3D and to showcase the potential of this technology in the areas of microassembly, lab-on-a-chip, and electronics. The approach presented in this research can be used as a stepping-off point to incorporate ferrofluidic robots toward future research in these areas.
Collapse
Affiliation(s)
- Reza Ahmed
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, USA
| | - Roberto Calandra
- Learning, Adaptive Systems, and Robotics (LASR) Lab, TU Dresden, Dresden, Germany
- The Centre for Tactile Internet with Human-in-the-Loop (CeTI), Dresden, Germany
| | - Hamid Marvi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Ramasundaram S, Saravanakumar G, Sobha S, Oh TH. Dextran Sulfate Nanocarriers: Design, Strategies and Biomedical Applications. Int J Mol Sci 2022; 24:ijms24010355. [PMID: 36613798 PMCID: PMC9820219 DOI: 10.3390/ijms24010355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Dextran sulfate (DXS) is a hydrophilic, non-toxic, biodegradable, biocompatible and safe biopolymer. These biomedically relevant characteristics make DXS a promising building block in the development of nanocarrier systems for several biomedical applications, including imaging and drug delivery. DXS polyanion can bind with metal oxide nanomaterials, biological receptors and therapeutic drug molecules. By taking advantage of these intriguing properties, DXS is used to functionalize or construct nanocarriers for specific applications. In particular, the diagnostic or therapeutic active agent-loaded DXS nanoparticles are prepared by simple coating, formation of polyelectrolyte complexes with other positively charged polymers or through self-assembly of amphiphilic DXS derivatives. These nanoparticles show a potential to localize the active agents at the pathological site and minimize undesired side effects. As DXS can recognize and be taken up by macrophage surface receptors, it is also used as a targeting ligand for drug delivery. Besides as a nanocarrier scaffold material, DXS has intrinsic therapeutic potential. DXS binds to thrombin, acts as an anticoagulant and exhibits an inhibitory effect against coagulation, retrovirus, scrapie virus and human immunodeficiency virus (HIV). Herein, biomedical applications involving the use of DXS as nanocarriers for drugs, biomolecules, and imaging agents have been reviewed. A special focus has been made on strategies used for loading and delivering of drugs and biomolecules meant for treating several diseases, including cancer, inflammatory diseases and ocular disease.
Collapse
Affiliation(s)
| | | | | | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea
- Correspondence:
| |
Collapse
|
3
|
Chen J, Xia L, Cao Q. Water-based ferrofluid with tunable stability and its significance in nuclear wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128893. [PMID: 35460993 DOI: 10.1016/j.jhazmat.2022.128893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The treatment of nuclear wastewater is one of the most urgent and arduous tasks currently, but traditional adsorption materials are significantly limited in practice due to their high demands on auxiliary operations (e.g., shaking or centrifugation) caused by poor stability or recyclability. To tackle this challenge, a water-based ferrofluid composed of magnetic nanoparticles grown in polyethylenimine branches is reported and applied to nuclear wastewater treatment. It is demonstrated that the ferrofluid can keep stable spontaneously in a wide pH range (3-11) out of their ultra-small size, strong electropositivity as well as high charge buffering capacity to achieve shaker-free adsorption, and can be magnetically separated after the neutralization of their positive charge to achieve convenient recycle. Meanwhile, it is found that the ferrofluid shows wide pH/adsorbate applicability and strong ion selectivity in radionuclides absorption. Furthermore, it is anticipated to achieve maximum adsorption capacities for U(VI), Sr(II) and Co(II) as high as 331.5, 427.8 and 759.6 mg/g, respectively. With these characteristics, this ferrofluid outperforms other reported adsorbents. In conclusion, this work provides a practical and effective radioactive wastewater treatment strategy, and enlightens the development of materials for other applications facing the dilemma of incompatible stability and recyclability.
Collapse
Affiliation(s)
- Jingge Chen
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liangyu Xia
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
5
|
Recent Advances in the Synthesis, Properties, and Applications of Modified Chitosan Derivatives: Challenges and Opportunities. Top Curr Chem (Cham) 2021; 379:19. [DOI: 10.1007/s41061-021-00331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
|
6
|
Willis AJ, Pernal SP, Gaertner ZA, Lakka SS, Sabo ME, Creighton FM, Engelhard HH. Rotating Magnetic Nanoparticle Clusters as Microdevices for Drug Delivery. Int J Nanomedicine 2020; 15:4105-4123. [PMID: 32606667 PMCID: PMC7295537 DOI: 10.2147/ijn.s247985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) hold promise for enhancing delivery of therapeutic agents, either through direct binding or by functioning as miniature propellers. Fluid-filled conduits and reservoirs within the body offer avenues for MNP-enhanced drug delivery. MNP clusters can be rotated and moved across surfaces at clinically relevant distances in response to a rotating magnet. Limited data are available regarding issues affecting MNP delivery by this mechanism, such as adhesion to a cellular wall. Research reported here was initiated to better understand the fundamental principles important for successful implementation of rotational magnetic drug targeting (rMDT). METHODS Translational movements of four different iron oxide MNPs were tested, in response to rotation (3 Hz) of a neodymium-boron-iron permanent magnet. MNP clusters moved along biomimetic channels of a custom-made acrylic tray, by surface walking. The effects of different distances and cellular coatings on MNP velocity were analyzed using videography. Dyes (as drug surrogates) and the drug etoposide were transported by rotating MNPs along channels over a 10 cm distance. RESULTS MNP translational velocities could be predicted from magnetic separation times. Changes in distance or orientation from the magnet produced alterations in MNP velocities. Mean velocities of the fastest MNPs over HeLa, U251, U87, and E297 cells were 0.24 ± 0.02, 0.26 ± 0.02, 0.28 ± 0.01, and 0.18 ± 0.03 cm/sec, respectively. U138 cells showed marked MNP adherence and an 87.1% velocity reduction at 5.5 cm along the channel. Dye delivery helped visualize the effects of MNPs as microdevices for drug delivery. Dye delivery by MNP clusters was 21.7 times faster than by diffusion. MNPs successfully accelerated etoposide delivery, with retention of chemotherapeutic effect. CONCLUSION The in vitro system described here facilitates side-by-side comparisons of drug delivery by rotating MNP clusters, on a human scale. Such microdevices have the potential for augmenting drug delivery in a variety of clinical settings, as proposed.
Collapse
Affiliation(s)
- Alexander J Willis
- Division of Hematology-Oncology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Sajani S Lakka
- Division of Hematology-Oncology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Herbert H Engelhard
- Departments of Neurosurgery and Bioengineering, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Chitosan Grafted with Biobased 5-Hydroxymethyl-Furfural as Adsorbent for Copper and Cadmium Ions Removal. Polymers (Basel) 2020; 12:polym12051173. [PMID: 32443800 PMCID: PMC7285093 DOI: 10.3390/polym12051173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022] Open
Abstract
This work investigates the application of 5-hydroxymethyl-furfural (HMF) as a grafting agent to chitosan (CS). The material produced was further modified by cross-linking. Three different derivatives were tested with molecular ratios CS/HMF of 1:1 (CS-HMF1), 2:1 (CS-HMF2) and 10:1 mol/mol (CS-HMF3)) to remove Cu2+ and Cd2+ from aqueous solutions. CS-HMF derivatives were characterized both before, and after, metal ions adsorption by using scanning electron microscopy (SEM), as well as Fourier-transform infrared (FTIR) spectroscopy thermogravimetric analysis (TGA), and X-Ray diffraction analysis (XRD). The CS-HMF derivatives were tested at pH = 5 and showed higher adsorption capacity with the increase of temperature. Also, the equilibrium data were fitted to Langmuir (best fitting) and Freundlich model, while the kinetic data to pseudo-first (best fitting) and pseudo-second order equations. The Langmuir model fitted better (higher R2) the equilibrium data than the Freundlich equation. By increasing the HMF grafting from 130% (CS-HMF1) to 310% (CS-HMF3), an increase of 24% (26 m/g) was observed for Cu2+ adsorption and 19% (20 mg/g) for Cd2+. By increasing from T = 25 to 65 °C, an increase of the adsorption capacity (metal uptake) was observed. Ten reuse cycles were successfully carried out without significant loss of adsorption ability. The reuse potential was higher of Cd2+, but more stable desorption reuse ability during all cycles for Cu2+.
Collapse
|
8
|
Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T. Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydr Polym 2020; 238:116126. [PMID: 32299572 DOI: 10.1016/j.carbpol.2020.116126] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Polyelectrolyte complexes (PECs) as safe drug delivery carriers, are spontaneously formed by mixing the oppositely charged polyelectrolyte solutions in water without using organic solvents nor chemical cross-linker or surfactant. Intensifying attentions on the PECs study are aroused in academia and industry since the fabrication process of PECs is mild and they are ideal vectors for the delivery of susceptible drugs and macromolecules. Chitosan as the unique natural cationic polysaccharide, is a good bioadhesive material. Besides, due to its excellent biocompatibility, biodegradability, abundant availability and hydrophilic nature, chitosan-based PECs have been extensively applied for drug delivery, particularly after administration through mucosal and parenteral routes. The purpose of this review is to compile the recent advances on the biomedical applications of chitosan-based PECs, with specific focuses on the mucosal delivery, cancer therapy, gene delivery and anti-HIV therapy. The challenges and the perspectives of the chitosan-based PECs are briefly commented as well.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueling Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shumin Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Thierry Delair
- Ingénierie des Matériaux Polymères, UMR CNRS 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Bd. André Latarjet, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
9
|
Pascu B, Ardean C, Davidescu CM, Negrea A, Ciopec M, Duțeanu N, Negrea P, Rusu G. Modified Chitosan for Silver Recovery-Kinetics, Thermodynamic, and Equilibrium Studies. MATERIALS 2020; 13:ma13030657. [PMID: 32024185 PMCID: PMC7040575 DOI: 10.3390/ma13030657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study is to investigate the silver recovery from aqueous solutions. There are a variety of recovery methods, such as hydrometallurgical, bio-metallurgical, cementation, reduction, electrocoagulation, electrodialysis, ion exchange, etc. Adsorption represents a convenient, environment friendly procedure, that can be used to recover silver from aqueous solutions. In this paper we highlight the silver adsorption mechanism on chitosan chemically modified with active groups, through kinetic, thermodynamic, and equilibrium studies. A maximum adsorption capacity of 103.6 mg Ag(I)/g of adsorbent for an initial concentration of 700 mg/L was noticed by using modified chitosan. Lower adsorption capacity has been noticed in unmodified chitosan—a maximum of 75.43 mg Ag(I)/g. Optimum contact time was 120 min and the process had a maximum efficiency when conducted at pH higher than 6. At the same time, a way is presented to obtain metallic silver from the adsorbent materials used for the recovery of the silver from aqueous solutions.
Collapse
Affiliation(s)
- Bogdan Pascu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Corneliu Mircea Davidescu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Correspondence: (C.M.D.); (P.N.); Tel.: +40-256-404147 (C.M.D.); +40-256-404192 (P.N.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Narcis Duțeanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
- Correspondence: (C.M.D.); (P.N.); Tel.: +40-256-404147 (C.M.D.); +40-256-404192 (P.N.)
| | - Gerlinde Rusu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
| |
Collapse
|
10
|
Mousavi SJ, Parvini M, Ghorbani M. Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method. Carbohydr Polym 2018. [PMID: 29525157 DOI: 10.1016/j.carbpol.2018.01.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, new generation of silica-based mesoporous adsorbents were introduced for the removal of heavy metals with the aim of developing new adsorption technologies in water treatment. The magnetic nanoadsorbent, prepared by modification of SBA-15 with [3-(2-Aminoethylamino) propyl] trimethoxysilane (AEAPTMS)-functionalized chitosan, was applied for the removal of Zn2+ from aqueous solution. The synthesized Fe2O3@SBA-15-CS-AEAPTMS nanoadsorbent was thoroughly characterized using XRD, TEM, FTIR and BET analysis. In order to determine the optimum condition of Zn2+ adsorption on Fe2O3@SBA-15-CS-AEAPTMS (3 ml), the experiments were performed based on central composite design in a response surface methodology method. The obtained results were further studied using adsorption kinetic, isotherm and thermodynamic relations which revealed that Zn2+ adsorption was spontaneous and endothermic with enhanced adsorption efficiency achieved for higher contents of functional groups. In addition, according to the results, the adsorption process was best conformed to Langmuir isotherm (with R2 > 0.99 and qmax = 107.21 mg g-1) and pseudo second-order kinetic model (with R2 > 0.999). The values of standard entropy (DS°) and activation energy (Ea) reduced as the initial concentration was increased and the dominant mechanism was found to be chemisorption.
Collapse
Affiliation(s)
| | | | - Mohsen Ghorbani
- Department of Chemical Engineerng, Babol Noshirvani University of Technolgy, Shariati Ave., Babol, 47148-71167, Iran.
| |
Collapse
|
11
|
Affiliation(s)
- George Z Kyzas
- Hephaestus Advanced Laboratory; Eastern Macedonia and Thrace Institute of Technology; Kavala GR Greece
| | - Dimitrios N Bikiaris
- Division of Chemical Technology, Department of Chemistry; Aristotle University of Thessaloniki; GR Thessaloniki Greece
| | - Athanasios C Mitropoulos
- Hephaestus Advanced Laboratory; Eastern Macedonia and Thrace Institute of Technology; Kavala GR Greece
| |
Collapse
|
12
|
Šindelka K, Limpouchová Z, Štěpánek M, Procházka K. Stabilization of coated inorganic nanoparticles by amphiphilic copolymers in aqueous media. Dissipative particle dynamics study. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4090-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Woźniak E, Špírková M, Šlouf M, Garamus VM, Šafaříková M, Šafařík I, Štěpánek M. Stabilization of aqueous dispersions of poly(methacrylic acid)-coated iron oxide nanoparticles by double hydrophilic block polyelectrolyte poly(ethylene oxide)- block -poly( N -methyl-2-vinylpyridinium iodide). Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Composite particles formed by complexation of poly(methacrylic acid) — stabilized magnetic fluid with chitosan: Magnetic material for bioapplications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:486-492. [DOI: 10.1016/j.msec.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/31/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
|
15
|
Thermal Destabilization of Rhizomucor miehei Rennet with Aldehyde Dextran Sulfate: Purification, Bioconjugation and Milk-Clotting Activities. Appl Biochem Biotechnol 2016; 180:261-73. [DOI: 10.1007/s12010-016-2097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
|
16
|
Chitosan derivatives as important biorefinery intermediates. Quaternary tetraalkylammonium chitosan derivatives utilized in anion exchange chromatography for perchlorate removal. Int J Mol Sci 2015; 16:9064-77. [PMID: 25915024 PMCID: PMC4463578 DOI: 10.3390/ijms16059064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022] Open
Abstract
There has recently been great interest in the valorization of biomass waste in the context of the biorefinery. The biopolymer chitosan, derived from chitin, is present in large quantities of crustacean waste. This biomass can be converted into value-added products with applications in energy, fuel, chemicals and materials manufacturing. The many reported applications of this polymer can be attributed to its unique properties, such as biocompatibility, chemical versatility, biodegradability and low toxicity. Cost effective water filters which decontaminate water by removal of specific impurities and microbes are in great demand. To address this need, the development of ion exchange resins using environmentally friendly, renewable materials such as biopolymers as solid supports was evaluated. The identification and remediation of perchlorate contaminated water using an easy, inexpensive method has come under the spotlight recently. Similarly, the use of a low cost perchlorate selective solid phase extraction (SPE) cartridge that can be rapidly employed in the field is desirable. Chitosan based SPE coupled with colorimetric analytical methods showed promise as a renewable anion exchange support for perchlorate analysis or removal. The polymers displayed perchlorate retention comparable to the commercial standard whereby the quaternized iron loaded polymer TMC-Fe(III) displayed the best activity.
Collapse
|
17
|
Kyzas GZ, Bikiaris DN. Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar Drugs 2015; 13:312-37. [PMID: 25584681 PMCID: PMC4306939 DOI: 10.3390/md13010312] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/30/2014] [Indexed: 12/11/2022] Open
Abstract
Chitosan is considered to be one of the most promising and applicable materials in adsorption applications. The existence of amino and hydroxyl groups in its molecules contributes to many possible adsorption interactions between chitosan and pollutants (dyes, metals, ions, phenols, pharmaceuticals/drugs, pesticides, herbicides, etc.). These functional groups can help in establishing positions for modification. Based on the learning from previously published works in literature, researchers have achieved a modification of chitosan with a number of different functional groups. This work summarizes the published works of the last three years (2012-2014) regarding the modification reactions of chitosans (grafting, cross-linking, etc.) and their application to adsorption of different environmental pollutants (in liquid-phase).
Collapse
Affiliation(s)
- George Z Kyzas
- Laboratory of Polymer Chemistry and Technology, Division of Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Division of Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
18
|
|
19
|
Saraswathy A, Nazeer SS, Nimi N, Arumugam S, Shenoy SJ, Jayasree RS. Synthesis and characterization of dextran stabilized superparamagnetic iron oxide nanoparticles for in vivo MR imaging of liver fibrosis. Carbohydr Polym 2013; 101:760-8. [PMID: 24299836 DOI: 10.1016/j.carbpol.2013.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/04/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
The field of medical imaging has recently seen rapid advances in the development of novel agents for enhancing image contrast. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) with a variety of surface properties have been tried as effective contrast agents for magnetic resonance imaging, but with major side effects. In this study, the surface chemistry of SPIONs of size 12 nm was modified with high molecular weight dextran to yield particles of size 50 nm, without compromising the magnetic properties. A systematic characterization of the material for its size, coating efficiency, magnetic properties and biocompatibility has been carried out. The magnetic relaxivity as evaluated on a 1.5 T clinical magnet showed r2/r1 ratio of 56.28 which is higher than that reported for any other dextran stabilized ironoxide nanoparticles. Liver uptake and magnetic resonance imaging potential of dextran stabilized SPIONs (D-SPIONs) has been evaluated on liver fibrosis induced animal model, which is further supported by histopathology results.
Collapse
Affiliation(s)
- Ariya Saraswathy
- Biophotonics and Imaging Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | | | | | | | |
Collapse
|