1
|
Iskandar M, Ruiz-Houston KM, Bracco SD, Sharkasi SR, Calabi Villarroel CL, Desai MN, Gerges AG, Ortiz Lopez NA, Xiao Barbero M, German AA, Moluguri VS, Walker SM, Silva Higashi J, Palma JM, Medina DZ, Patel M, Patel P, Valentin M, Diaz AC, Karthaka JP, Santiago AD, Skiles RB, Romero Umana LA, Ungrey MD, Wojtkowiak A, Howard DV, Nurge R, Woods KG, Nanjundan M. Deep-Sea Sponges and Corals off the Western Coast of Florida-Intracellular Mechanisms of Action of Bioactive Compounds and Technological Advances Supporting the Drug Discovery Pipeline. Mar Drugs 2023; 21:615. [PMID: 38132936 PMCID: PMC10744787 DOI: 10.3390/md21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (K.M.R.-H.); (S.D.B.); (S.R.S.); (C.L.C.V.); (M.N.D.); (A.G.G.); (N.A.O.L.); (M.X.B.); (A.A.G.); (V.S.M.); (S.M.W.); (J.S.H.); (J.M.P.); (D.Z.M.); (M.P.); (P.P.); (M.V.); (A.C.D.); (J.P.K.); (A.D.S.); (R.B.S.); (L.A.R.U.); (M.D.U.); (A.W.); (D.V.H.); (R.N.); (K.G.W.)
| |
Collapse
|
2
|
The Antileukemic and Anti-Prostatic Effect of Aeroplysinin-1 Is Mediated through ROS-Induced Apoptosis via NOX Activation and Inhibition of HIF-1a Activity. Life (Basel) 2022; 12:life12050687. [PMID: 35629355 PMCID: PMC9145196 DOI: 10.3390/life12050687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Aeroplysinin-1 is a brominated isoxazoline alkaloid that has exhibited a potent antitumor cell effect in previous reports. We evaluated the cytotoxicity of aeroplysinin-1 against leukemia and prostate cancer cells in vitro. This marine alkaloid inhibited the cell proliferation of leukemia Molt-4, K562 cells, and prostate cancer cells Du145 and PC-3 with IC50 values of 0.12 ± 0.002, 0.54 ± 0.085, 0.58 ± 0.109 and 0.33 ± 0.042 µM, respectively, as shown by the MTT assay. Furthermore, in the non-malignant cells, CCD966SK and NR8383, its IC50 values were 1.54 ± 0.138 and 6.77 ± 0.190 μM, respectively. In a cell-free system, the thermal shift assay and Western blot assay verified the binding affinity of aeroplysinin-1 to Hsp90 and Topo IIα, which inhibited their activity. Flow cytometry analysis showed that the cytotoxic effect of aeroplysinin-1 is mediated through mitochondria-dependent apoptosis induced by reactive oxygen species (ROS). ROS interrupted the cellular oxidative balance by activating NOX and inhibiting HIF-1α and HO-1 expression. Pretreatment with N-acetylcysteine (NAC) reduced Apl-1-induced mitochondria-dependent apoptosis and preserved the expression of NOX, HO-1, and HIF-1a. Our findings indicated that aeroplysinin-1 targeted leukemia and prostate cancer cells through multiple pathways, suggesting its potential application as an anti-leukemia and prostate cancer drug lead.
Collapse
|
3
|
Lai KH, Peng BR, Hsu YM, El-Shazly M, Du YC, Lu MC, Su JH, Liu YC. The Configuration-Dependent Anti-Leukemic Effect of Manoalide Stereoisomers: Reignite Research Interest in these Sponge-Derived Sesterterpenoids. Bioorg Chem 2021; 114:105150. [PMID: 34328853 DOI: 10.1016/j.bioorg.2021.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Manoalide was studied as a potential anti-inflammatory agent for the last forty years and more than 200 publications and 180 patents were reported on this compound. However, the configurations at positions 24 and 25 and configuration-dependent bioactivity were not yet studied. In the current report, ten manoalide-like sesterterpenoids were isolated from Luffariella sp. (1-10). These stereoisomers were identified and separated for the first time since 1980 and their configurations at positions 24 and 25 were determined by analyzing their spectroscopic spectra. The configuration-dependent anti-proliferative activity of manoalide derivatives was examined by evaluating their effect on four leukemic cancer cell lines (Molt 4, K562, Sup-T1, and U937). The 24R,25S-isomers exhibited the most potent activity (IC50 0.50-7.67 μM). The anti-proliferative mechanism of action of 24R,25S-manoalide (7) was further studied on Molt 4 cells. Compound 7 exhibited apoptotic activity on Molt 4 cells through the disruption of mitochondrial membrane potential (MMP) and the generation of intracellular reactive oxygen species (ROS). It also inhibited the activity of human topoisomerase I and II. The apoptotic-inducing effect of 7 was further supported by the in vivo experiment by suppressing the volume of xenograft tumor growth (66.11%) compared with the control.
Collapse
Affiliation(s)
- Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Bo-Rong Peng
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan
| | - Yu-Ming Hsu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt; Department of Pharmaceutical Biology, German University in Cairo, Cairo 11432, Egypt
| | - Ying-Chi Du
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan
| | - Jui-Hsin Su
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
4
|
Dong H, Dong S, Erik Hansen P, Stagos D, Lin X, Liu M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar Drugs 2020; 18:E411. [PMID: 32759739 PMCID: PMC7459620 DOI: 10.3390/md18080411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antiradical, antimicrobial, anticancer, antidiabetic, anti-inflammatory effects, and so on. Here, we briefly review the recent progress of these marine algae biomaterials and their derivatives from 2011 to 2020, with respect to structure, bioactivities, and their potential application as pharmaceuticals.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songtao Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Poul Erik Hansen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece;
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Jiangyang, Luzhou 646000, China;
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
13-Acetoxysarcocrassolide Exhibits Cytotoxic Activity Against Oral Cancer Cells Through the Interruption of the Keap1/Nrf2/p62/SQSTM1 Pathway: The Need to Move Beyond Classical Concepts. Mar Drugs 2020; 18:md18080382. [PMID: 32718084 PMCID: PMC7459766 DOI: 10.3390/md18080382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
13-Acetoxysarcocrassolide (13-AC), a marine cytotoxic product isolated from the alcyonacean coral Lobophytum crassum, exhibited potent antitumor and immunostimulant effects as reported in previous studies. However, the 13-AC antitumor mechanism of action against oral cancer cells remains unclear. The activity of 13-AC against Ca9-22 cancer cells was determined using MTT assay, flow cytometric analysis, immunofluorescence, immunoprecipitation, Western blotting, and siRNA. 13-AC induced apoptosis in oral cancer cells Ca9-22 through the disruption of mitochondrial membrane potential (MMP) and the stimulation of reactive oxygen species (ROS) generation. It increased the expression of apoptosis- and DNA damage-related proteins in a concentration- and time-dependent manner. It exerted potent antitumor effect against oral cancer cells, as demonstrated by the in vivo xenograft animal model. It significantly reduced the tumor volume (55.29%) and tumor weight (90.33%). The pretreatment of Ca9-22 cells with N-acetylcysteine (NAC) inhibited ROS production resulting in the attenuation of the cytotoxic activity of 13-AC. The induction of the Keap1-Nrf2 pathway and the promotion of p62/SQSTM1 were observed in Ca9-22 cells treated with 13-AC. The knockdown of p62 expression by siRNA transfection significantly attenuated the effect of 13-AC on the inhibition of cell viability. Our results indicate that 13-AC exerted its cytotoxic activity through the promotion of ROS generation and the suppression of the antioxidant enzyme activity. The apoptotic effect of 13-AC was found to be mediated through the interruption of the Keap1/Nrf2/p62/SQSTM1 pathway, suggesting its potential future application as an anticancer agent.
Collapse
|
6
|
Chen M, Yan Y, Ge H, Jiao WH, Zhang Z, Lin HW. Pseudoceroximes A-E and Pseudocerolides A-E - Bromotyrosine Derivatives from a Pseudoceratina
sp. Marine Sponge Collected in the South China Sea. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mengxuan Chen
- Ocean College, Zhoushan Campus; Zhejiang University; 316021 Zhoushan P.R. China
| | - Yizhen Yan
- Research Center for Marine Drugs; State Key Laboratory of Oncogenes and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai P.R. China
| | - Hengju Ge
- Ocean College, Zhoushan Campus; Zhejiang University; 316021 Zhoushan P.R. China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs; State Key Laboratory of Oncogenes and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai P.R. China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus; Zhejiang University; 316021 Zhoushan P.R. China
| | - Hou-Wen Lin
- Research Center for Marine Drugs; State Key Laboratory of Oncogenes and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai P.R. China
| |
Collapse
|
7
|
ElHady AK, Shih SP, Chen YC, Liu YC, Ahmed NS, Keeton AB, Piazza GA, Engel M, Abadi AH, Abdel-Halim M. Extending the use of tadalafil scaffold: Development of novel selective phosphodiesterase 5 inhibitors and histone deacetylase inhibitors. Bioorg Chem 2020; 98:103742. [PMID: 32199305 DOI: 10.1016/j.bioorg.2020.103742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
Abstract
Herein we present the synthesis and characterization of a novel chemical series of tadalafil analogues that display different pharmacological profiles. Compounds that have the 6R, 12aR configuration and terminal carboxylic acid group at the side chain arising from the piperazinedione nitrogen were potent PDE5 inhibitors, with compound 11 having almost equal potency to tadalafil and superior selectivity over PDE11, the most common off-target for tadalafil. Modifying the stereochemistry into 6S, 12aS configuration and adopting the hydroxamic acid moiety as a terminal group gave rise to compounds that only inhibited HDAC. Dual PDE5/HDAC inhibition could be achieved with compounds having 6R, 12aR configuration and hydroxamic acid moiety as a terminal group. The anticancer activity of the synthesized compounds was evaluated against a diverse number of cell lines of different origin. The compounds elicited anticancer activity against cell lines belonging to lymphoproliferative cancer as well as solid tumors. Despite the previous reports suggesting anticancer activity of PDE5 inhibitors, the growth inhibitory activity of the compounds seemed to be solely dependent on HDAC inhibition. Compound 26 (pan HDAC IC50 = 14 nM, PDE5 IC50 = 46 nM) displayed the most potent anticancer activity in the present series and was shown to induce apoptosis in Molt-4 cells. HDAC isoform selectivity testing for compound 26 showed that it is more selective for HDAC6 and 8 over HDAC1 by more than 20-fold.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nermin S Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
8
|
Sabir M, Tan YY, Aris A, Mani AR. The role of endogenous bromotyrosine in health and disease. Free Radic Res 2019; 53:1019-1034. [PMID: 31530194 DOI: 10.1080/10715762.2019.1668560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bromotyrosine is a stable by-product of eosinophil peroxidase activity, a result of eosinophil activation during an inflammatory immune response. The elevated presence of bromotyrosine in tissue, blood, and urine in medical conditions involving eosinophil activation has highlighted the potential role of bromotyrosine as a medical biomarker. This is highly beneficial in a paediatric setting as a urinary noninvasive biomarker. However, bromotyrosine and its derivatives may exert biological effects, such as protective effects in the brain and pathogenic effects in the thyroid. Understanding these pathways may yield therapeutic advancements in medicine. In this review, we summarize the existing evidence present in literature relating to bromotyrosine formation and metabolism, identify the biological actions of bromotyrosine and evaluate the feasibility of bromotyrosine as a medical biomarker.
Collapse
Affiliation(s)
- Mariam Sabir
- UCL Division of Medicine, Royal Free Campus, University College London , London , UK
| | - Yen Yi Tan
- UCL Division of Medicine, Royal Free Campus, University College London , London , UK
| | - Aleena Aris
- UCL Division of Medicine, Royal Free Campus, University College London , London , UK
| | - Ali R Mani
- UCL Division of Medicine, Royal Free Campus, University College London , London , UK
| |
Collapse
|
9
|
Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru 2019; 27:491-515. [PMID: 31165439 PMCID: PMC6593002 DOI: 10.1007/s40199-019-00273-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Marine organisms comprising animals and plants are wealthiest sources of bioactive compounds possessing various pharmacological properties specifically: free radical scavenging, antitumor, antimicrobial, analgesic, neuroprotective and immunomodulatory. Marine drugs provide an alternative source to meet the demand of effective, safe and low-cost drugs that are rising with the continuously growing world population. Cancer is one of the leading reasons of mortality in western nations in contrast to communicable diseases of developing nations. In spite of outstanding developments in cancer therapy in past three decades, there is still an insistent necessity for innovative drugs in the area of cancer biology, especially in the unexplored area of marine anticancer compounds. However, recent technological innovations in structure revelation, synthetic creation of new compounds and biological assays have made possible the isolation and clinical assessment of innumerable unique anticancer compounds from marine environment. This review provides an insight into the anticancer research so far conducted in the area of the marine natural products/synthetic derivatives, their possible molecular targets and the current challenges in the drug development. Graphical abstract.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| | - Hafiz Ansar Rasul Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216 Australia
- UQ Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street Woolloongabba, Brisbane, QLD 4102 Australia
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506 USA
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
10
|
The Antioxidant from Ethanolic Extract of Rosa cymosa Fruits Activates Phosphatase and Tensin Homolog In Vitro and In Vivo: A New Insight on Its Antileukemic Effect. Int J Mol Sci 2019; 20:ijms20081935. [PMID: 31010164 PMCID: PMC6514837 DOI: 10.3390/ijms20081935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Rosa cymosa Tratt is a Chinese herbal remedy that is used in the treatment of diarrhea, burns, rheumatoid arthritis, and hemorrhage. Despite its use in Asian folk medicine, there are limited reports on the biological activity of R. cymosa fruits. This study focused on the investigation of the antitumor effect of the antioxidative ethanolic extract of R. cymosa fruits (RCE) along with its underlying mechanism of action. RCE showed a potent cytotoxic effect against Sup-T1 and Molt-4 lymphoblastic leukemia cells. In the xenograft animal model, the tumor size was significantly reduced to about 59.42% in the RCE-treated group in comparison with the control group. The use of RCE (37.5, 75, or 150 μg/mL) triggered apoptosis by 26.52–83.49%, disrupted mitochondrial membrane potential (MMP) by 10.44–58.60%, and promoted calcium release by 1.29-, 1.44-, and 1.71-fold compared with the control group. The extract induced redox oxygen species (ROS) generation through the elimination of Nrf2/Keap1/P62-mediated oxidative stress response. The loss of phosphatase and tensin homolog (PTEN) activation by RCE impaired PI3K/Akt/Foxo and Jak/Stat activation pathways, which contributed to tumorigenesis. These multiple targets of R. cymosa against hematologic cancer cells suggested its potential application as an antileukemic dietary supplement.
Collapse
|
11
|
Anticancer Activity of Gukulenin A Isolated from the Marine Sponge Phorbas gukhulensis In Vitro and In Vivo. Mar Drugs 2019; 17:md17020126. [PMID: 30795557 PMCID: PMC6410303 DOI: 10.3390/md17020126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023] Open
Abstract
Gukulenin A is a bis-tropolone tetraterpenoid isolated from the marine sponge Phorbas gukhulensis. In this study, we examined the anticancer activities of gukulenin A in ovarian cancer cell lines (A2780, SKOV3, OVCAR-3, and TOV-21G) and in an ovarian cancer mouse model generated by injecting A2780 cells. We found that gukulenin A suppressed tumor growth in A2780-bearing mice. Gukulenin A markedly inhibited cell viability in four ovarian cancer cell lines, including the A2780 cell line. Gukulenin A treatment increased the fraction of cells accumulated at the sub G1 phase in a dose-dependent manner and the population of annexin V-positive cells, suggesting that gukulenin A induces apoptotic cell death in ovarian cancer cells. In addition, gukulenin A triggered the activation of caspase-3, -8, and -9, and caspase inhibitors attenuated gukulenin A-induced A2780 cell death. The results suggest that gukulenin A may be a potential therapeutic agent for ovarian cancer.
Collapse
|
12
|
Helber SB, Hoeijmakers DJJ, Muhando CA, Rohde S, Schupp PJ. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS One 2018; 13:e0197617. [PMID: 29924803 PMCID: PMC6010217 DOI: 10.1371/journal.pone.0197617] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Coral reefs are experiencing increasing anthropogenic impacts that result in substantial declines of reef-building corals and a change of community structure towards other benthic invertebrates or macroalgae. Reefs around Zanzibar are exposed to untreated sewage and runoff from the main city Stonetown. At many of these sites, sponge cover has increased over the last years. Sponges are one of the top spatial competitors on reefs worldwide. Their success is, in part, dependent on their strong chemical defenses against predators, microbial attacks and other sessile benthic competitors. This is the first study that investigates the bioactive properties of sponge species in the Western Indian Ocean region. Crude extracts of the ten most dominant sponge species were assessed for their chemical defenses against 35 bacterial strains (nine known as marine pathogens) using disc diffusion assays and general cytotoxic activities were assessed with brine shrimp lethality assays. The three chemically most active sponge species were additionally tested for their allelopathic properties against the scleractinian coral competitor Porites sp.. The antimicrobial assays revealed that all tested sponge extracts had strong antimicrobial properties and that the majority (80%) of the tested sponges were equally defended against pathogenic and environmental bacterial strains. Additionally, seven out of ten sponge species exhibited cytotoxic activities in the brine shrimp assay. Moreover, we could also show that the three most bioactive sponge species were able to decrease the photosynthetic performance of the coral symbionts and thus were likely to impair the coral physiology.
Collapse
Affiliation(s)
- Stephanie B. Helber
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | | | - Christopher A. Muhando
- Institute of Marine Sciences (IMS), University of Dar es Salaam, Stonetown, Zanzibar, Tanzania
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Chen YC, Lu MC, El-Shazly M, Lai KH, Wu TY, Hsu YM, Lee YL, Liu YC. Breaking down Leukemia Walls: Heteronemin, a Sesterterpene Derivative, Induces Apoptosis in Leukemia Molt4 Cells through Oxidative Stress, Mitochondrial Dysfunction and Induction of Talin Expression. Mar Drugs 2018; 16:md16060212. [PMID: 29914195 PMCID: PMC6025351 DOI: 10.3390/md16060212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Heteronemin, the most abundant secondary metabolite in the sponge Hippospongia sp., exhibited potent cytotoxic activity against several cancer cell lines. It increased the percentage of apoptotic cells and reactive oxygen species (ROS) in Molt4 cells. The use of ROS scavenger, N-acetyl cysteine (NAC), suppressed both the production of ROS from mitochondria and cell apoptosis that were induced by heteronemin treatment. Heteronemin upregulated talin and phosphorylated talin expression in Molt4 cells but it only upregulated the expression of phosphorylated talin in HEK293 cells. However, pretreatment with NAC reversed these effects. Talin siRNA reversed the activation of pro-apoptotic cleaved caspases 3 and 9. On the other hand, the downstream proteins including FAK and NF-κB (p65) were not affected. In addition, we confirmed that heteronemin directly modulated phosphorylated talin expression through ROS generation resulting in cell apoptosis, but it did not affect talin/FAK complex. Furthermore, heteronemin interfered with actin microfilament and caused morphology changes. Taken together, these findings suggest that the cytotoxic effect of heteronemin is associated with oxidative stress and induction of phosphorylated talin expression. Our results suggest that heteronemin represents an interesting candidate which can be further developed as a drug lead against leukemia.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt.
| | - Kuei-Hung Lai
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Tung-Ying Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Ming Hsu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Lun Lee
- Department of Urology, Sinying Hospital, Ministry of Health and Welfare, Tainan 730, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
14
|
Lee MG, Liu YC, Lee YL, El-Shazly M, Lai KH, Shih SP, Ke SC, Hong MC, Du YC, Yang JC, Sung PJ, Wen ZH, Lu MC. Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90. Mar Drugs 2018; 16:md16060204. [PMID: 29890785 PMCID: PMC6025191 DOI: 10.3390/md16060204] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/31/2018] [Accepted: 06/09/2018] [Indexed: 12/11/2022] Open
Abstract
Heteronemin, a marine sesterterpenoid-type natural product, possesses diverse bioactivities, especially antitumor effect. Accumulating evidence shows that heteronemin may act as a potent anticancer agent in clinical therapy. To fully understand the antitumor mechanism of heteronemin, we further explored the precise molecular targets in prostate cancer cells. Initially, heteronemin exhibited potent cytotoxic effect against LNcap and PC3 prostate cancer cells with IC50 1.4 and 2.7 μM after 24 h, respectively. In the xenograft animal model, the tumor size was significantly suppressed to about 51.9% in the heteronemin-treated group in comparison with the control group with no significant difference in the mice body weights. In addition, the results of a cell-free system assay indicated that heteronemin could act as topoisomerase II (topo II) catalytic inhibitor through the elimination of essential enzymatic activity of topoisomerase IIα expression. We found that the use of heteronemin-triggered apoptosis by 20.1⁻68.3%, caused disruption of mitochondrial membrane potential (MMP) by 66.9⁻99.1% and promoted calcium release by 1.8-, 2.0-, and 2.1-fold compared with the control group in a dose-dependent manner, as demonstrated by annexin-V/PI, rhodamine 123 and Fluo-3 staining assays, respectively. Moreover, our findings indicated that the pretreatment of LNcap cells with an inhibitor of protein tyrosine phosphatase (PTPi) diminished growth inhibition, oxidative and Endoplasmic Reticulum (ER) stress, as well as activation of Chop/Hsp70 induced by heteronemin, suggesting PTP activation plays a crucial rule in the cytotoxic activity of heteronemin. Using molecular docking analysis, heteronemin exhibited more binding affinity to the N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. Finally, heteronemin promoted autophagy and apoptosis through the inhibition of Hsp 90 and topo II as well as PTP activation in prostate cancer cells. Taken together, these multiple targets present heteronemin as an interesting candidate for its future development as an antiprostatic agent.
Collapse
Affiliation(s)
- Man-Gang Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan.
- Division of Urology, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Lun Lee
- Department of Urology, Sinying Hospital, Ministry of Health and Welfare, Tainan 730, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 115, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 114, Egypt.
| | - Kuei-Hung Lai
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | - Seng-Chung Ke
- Division of Urology, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | - Ying-Chi Du
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Juan-Cheng Yang
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Zhi-Hong Wen
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| |
Collapse
|
15
|
Żółtowska-Aksamitowska S, Tsurkan MV, Lim SC, Meissner H, Tabachnick K, Shaala LA, Youssef DTA, Ivanenko VN, Petrenko I, Wysokowski M, Bechmann N, Joseph Y, Jesionowski T, Ehrlich H. The demosponge Pseudoceratina purpurea as a new source of fibrous chitin. Int J Biol Macromol 2018; 112:1021-1028. [PMID: 29452181 DOI: 10.1016/j.ijbiomac.2018.02.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/31/2018] [Accepted: 02/11/2018] [Indexed: 11/26/2022]
Abstract
Among marine demosponges (Porifera: Demospongiae), only representatives of the order Verongiida have been recognized to synthetize both biologically active substances as well as scaffolds-like fibrous skeletons made of structural aminopolysaccharide chitin. The unique 3D architecture of such scaffolds open perspectives for their applications in waste treatment, biomimetics and tissue engineering. Here, we focus special attention to the demosponge Pseudoceratina purpurea collected in the coastal waters of Singapore. For the first time the detailed description of the isolation of chitin from the skeleton of this sponge and its identification using diverse bioanalytical tools were carried out. Calcofluor white staining, FTIR analysis, electrospray ionization mass spectrometry (ESI-MS), SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of alpha-chitin in the skeleton of P. purpurea. We suggest that the discovery of chitin within representatives of Pseudoceratinidae family is a perspective step in evaluation of these verongiid sponges as novel renewable sources for both chitin and biologically active metabolites, which are of prospective use for marine oriented biomedicine and pharmacology, respectively.
Collapse
Affiliation(s)
- Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Hohestraße 6, 01069 Dresden, Germany
| | - Swee-Cheng Lim
- National University of Singapore, Tropical Marine Science Institute, 18 Kent Ridge Road, S2S, 119227, Singapore
| | - Heike Meissner
- Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | - Konstantin Tabachnick
- P.P. Shirshov Institute of Oceanology of Academy of Sciences of Russia Moscow, Russia
| | - Lamiaa A Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Iaroslav Petrenko
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09559 Freiberg, Germany
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland
| | - Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09559 Freiberg, Germany.
| |
Collapse
|
16
|
Isoaaptamine Induces T-47D Cells Apoptosis and Autophagy via Oxidative Stress. Mar Drugs 2018; 16:md16010018. [PMID: 29315210 PMCID: PMC5793066 DOI: 10.3390/md16010018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Aaptos is a genus of marine sponge which belongs to Suberitidae and is distributed in tropical and subtropical oceans. Bioactivity-guided fractionation of Aaptos sp. methanolic extract resulted in the isolation of aaptamine, demethyloxyaaptamine, and isoaaptamine. The cytotoxic activity of the isolated compounds was evaluated revealing that isoaaptamine exhibited potent cytotoxic activity against breast cancer T-47D cells. In a concentration-dependent manner, isoaaptamine inhibited the growth of T-47D cells as indicated by short-(MTT) and long-term (colony formation) anti-proliferative assays. The cytotoxic effect of isoaaptamine was mediated through apoptosis as indicated by DNA ladder formation, caspase-7 activation, XIAP inhibition and PARP cleavage. Transmission electron microscopy and flow cytometric analysis using acridine orange dye indicated that isoaaptamine treatment could induce T-47D cells autophagy. Immunoblot assays demonstrated that isoaaptamine treatment significantly activated autophagy marker proteins such as type II LC-3. In addition, isoaaptamine treatment enhanced the activation of DNA damage (γH2AX) and ER stress-related proteins (IRE1 α and BiP). Moreover, the use of isoaaptamine resulted in a significant increase in the generation of reactive oxygen species (ROS) as well as in the disruption of mitochondrial membrane potential (MMP). The pretreatment of T-47D cells with an ROS scavenger, N-acetyl-l-cysteine (NAC), attenuated the apoptosis and MMP disruption induced by isoaaptamine up to 90%, and these effects were mediated by the disruption of nuclear factor erythroid 2-related factor 2 (Nrf 2)/p62 pathway. Taken together, these findings suggested that the cytotoxic effect of isoaaptamine is associated with the induction of apoptosis and autophagy through oxidative stress. Our data indicated that isoaaptamine represents an interesting drug lead in the war against breast cancer.
Collapse
|
17
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
18
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2017; 15:md15090273. [PMID: 28850074 PMCID: PMC5618412 DOI: 10.3390/md15090273] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA.
| | | | | |
Collapse
|
19
|
Tarazona G, Santamaría G, Cruz PG, Fernández R, Pérez M, Martínez-Leal JF, Rodríguez J, Jiménez C, Cuevas C. Cytotoxic Anomoian B and Aplyzanzine B, New Bromotyrosine Alkaloids from Indonesian Sponges. ACS OMEGA 2017; 2:3494-3501. [PMID: 30023696 PMCID: PMC6044681 DOI: 10.1021/acsomega.7b00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 05/19/2023]
Abstract
Two new bromotyrosine derivatives, anomoian B (1) and aplyzanzine B (2), were isolated, respectively, from the organic extracts of a Verongida sponge belonging to the Hexadella genus and from a two-sponge association (Jaspis sp. and Bubaris sp.), both collected off the coast of Indonesia. The planar structure of 1 and 2 was determined by 1D and 2D NMR experiments and by high-resolution mass spectrometry, while their absolute stereochemistry was assigned by comparison with optical rotation values of known bromotyrosines and by chemical degradation. Both compounds showed moderate antiproliferative activity against a panel of different cancer cell lines. Their cytotoxic activity is facilitated through the induction of apoptosis, which is mediated neither by the generation of reactive oxygen species nor by the inhibition of histone deacetylases in these cell lines.
Collapse
Affiliation(s)
- Guillermo Tarazona
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Gema Santamaría
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Patricia G. Cruz
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Rogelio Fernández
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
- E-mail: (R.F.)
| | - Marta Pérez
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Juan Fernando Martínez-Leal
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Jaime Rodríguez
- Departamento
de Química, Facultade de Ciencias e Centro de Investigacións
Científicas Avanzadas (CICA), Universidade
da Coruña, 15071 A Coruña, Spain
- E-mail: (J.R.)
| | - Carlos Jiménez
- Departamento
de Química, Facultade de Ciencias e Centro de Investigacións
Científicas Avanzadas (CICA), Universidade
da Coruña, 15071 A Coruña, Spain
| | - Carmen Cuevas
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| |
Collapse
|
20
|
Lai KH, Liu YC, Su JH, El-Shazly M, Wu CF, Du YC, Hsu YM, Yang JC, Weng MK, Chou CH, Chen GY, Chen YC, Lu MC. Antileukemic Scalarane Sesterterpenoids and Meroditerpenoid from Carteriospongia (Phyllospongia) sp., Induce Apoptosis via Dual Inhibitory Effects on Topoisomerase II and Hsp90. Sci Rep 2016; 6:36170. [PMID: 27796344 PMCID: PMC5086919 DOI: 10.1038/srep36170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/07/2016] [Indexed: 01/24/2023] Open
Abstract
Two new scalarane sesterterpenoids, 12β-(3′β-hydroxybutanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (1) and 12β-(3′β-hydroxypentanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (2), along with one known tetraprenyltoluquinol-related metabolite (3), were isolated from the sponge Carteriospongia sp. In leukemia Molt 4 cells, 1 at 0.0625 μg/mL (125 nM) triggered mitochondrial membrane potential (MMP) disruption and apoptosis showing more potent effect than 2 and 3. The isolates inhibited topoisomerase IIα expression. The apoptotic-inducing effect of 3 was supported by the in vivo experiment through suppressing the volume of xenograft tumor growth (47.58%) compared with the control. Compound 1 apoptotic mechanism of action in Molt 4 cells was further elucidated through inducing ROS generation, calcium release and ER stress. Using the molecular docking analysis, 1 exhibited more binding affinity to N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. The expression of Hsp90 client proteins, Akt, p70S6k, NFκB, Raf-1, p-GSK3β, and XIAP, MDM 2 and Rb2, and CDK4 and Cyclin D3, HIF 1 and HSF1 were suppressed by the use of 1. However, the expression of Hsp70, acetylated tubulin, and activated caspase 3 were induced after 1 treatment. Our results suggested that the proapoptotic effect of the isolates is mediated through the inhibition of Hsp90 and topoisomerase activities.
Collapse
Affiliation(s)
- Kuei-Hung Lai
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jui-Hsin Su
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Chih-Fung Wu
- Division of Surgical Oncology, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ying-Chi Du
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Juan-Cheng Yang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Kai Weng
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan
| | - Chia-Hua Chou
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| | - Guan-Yu Chen
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| |
Collapse
|
21
|
Chen CL, Kao YC, Yang PH, Sung PJ, Wen ZH, Chen JJ, Huang YB, Chen PY. A Small Dibromotyrosine Derivative Purified From Pseudoceratina Sp. Suppresses TGF-β Responsiveness by Inhibiting TGF-β Type I Receptor Serine/Threonine Kinase Activity. J Cell Biochem 2016; 117:2800-2814. [PMID: 27153151 DOI: 10.1002/jcb.25581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/02/2016] [Indexed: 01/05/2023]
Abstract
For clinical application, there is a great need for small-molecule inhibitors (SMIs) that could control pathogenic effects of transforming growth factor (TGF-β) and/or modulate effects of TGF-β in normal responses. Selective SMIs of the TGF-β signaling pathway developed for therapeutics will also be powerful tools in experimentally dissecting this complex pathway, especially its cross-talk with other signaling pathways. In this study, we characterized (1'R,5'S,6'S)-2-(3',5'-dibromo-1',6'-dihydroxy-4'-oxocyclohex-2'-enyl) acetonitrile (DT), a member of a new class of small-molecule inhibitors related to bromotyrosine derivate from Pseudoceratina sp., which inhibits the TGF-β type I receptor serine/threonine kinase known as activin receptor-like kinase (ALK) 5. The inhibitory effects of DT on TGF-β-induced Smad signaling and epithelial-to-mesenchymal transition (EMT) were investigated in epithelial cells using in vitro kinase assay, luciferase reporter assays, immunoblotting, confocal microscopy, and wound healing assays. The novel ALK5 inhibitor, DT, inhibited the TGF-β-stimulated transcriptional activations of 3TP-Lux. In addition, DT decreased phosphorylated Smad2/3 levels and the nuclear translocation of Smad2/3 increased by TGF-β. In addition, DT inhibited TGF-β-induced EMT and wound healing of A549 cells. Our results suggest that DT is a potential therapeutic agent for fibrotic disease and cancer treatment. J. Cell. Biochem. 117: 2800-2814, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 80424, Taiwan, ROC.
| | - Yu-Chen Kao
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Pei-Hua Yang
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien 97401, Taiwan, ROC.,National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Jih-Jung Chen
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 907, Taiwan, ROC
| | - Yaw-Bin Huang
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Pei-Yu Chen
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| |
Collapse
|
22
|
Affiliation(s)
- Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; E-Mail:
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russian Federation
- School of Natural Sciences, Far East Federal University, 690022 Vladivostok, Russian Federation
| | - Friedemann Honecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; E-Mail:
- Tumor and Breast Center ZeTuP St. Gallen, 9006 St. Gallen, Switzerland
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
23
|
Gribble GW. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar Drugs 2015; 13:4044-136. [PMID: 26133553 PMCID: PMC4515607 DOI: 10.3390/md13074044] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
Abstract
This review presents the biological activity-antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity-of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
24
|
Shih SP, Lee MG, El-Shazly M, Juan YS, Wen ZH, Du YC, Su JH, Sung PJ, Chen YC, Yang JC, Wu YC, Lu MC. Tackling the Cytotoxic Effect of a Marine Polycyclic Quinone-Type Metabolite: Halenaquinone Induces Molt 4 Cells Apoptosis via Oxidative Stress Combined with the Inhibition of HDAC and Topoisomerase Activities. Mar Drugs 2015; 13:3132-53. [PMID: 26006712 PMCID: PMC4446623 DOI: 10.3390/md13053132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/07/2015] [Indexed: 02/08/2023] Open
Abstract
A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 μg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%–70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%–53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities.
Collapse
Affiliation(s)
- Shou-Ping Shih
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
| | - Man-Gang Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Division of Urology, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt.
| | - Yung-Shun Juan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan.
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Ying-Chi Du
- Department of Botanicals, Medical and Pharmaceutical Industry Technology and Development Center , New Taipei City 248, Taiwan.
| | - Jui-Hsin Su
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Yu-Cheng Chen
- The PhD Program of Cancer Biology and Drug discovery, China Medical University, Taichung 404, Taiwan.
| | - Juan-Cheng Yang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center of Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| |
Collapse
|
25
|
Gotsbacher MP, Karuso P. New antimicrobial bromotyrosine analogues from the sponge Pseudoceratina purpurea and its predator Tylodina corticalis. Mar Drugs 2015; 13:1389-409. [PMID: 25786066 PMCID: PMC4377990 DOI: 10.3390/md13031389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022] Open
Abstract
Bioassay-guided fractionation of extracts from temperate Australian collections of the marine sponge Pseudoceratina purpurea resulted in the isolation and characterisation of two new and six known bromotyrosine-derived alkaloids with antibiotic activity. Surprisingly, a single specimen of the mollusc Tylodina corticalis, which was collected while feeding on P. purpurea, contained only a few of the compounds found in the sponge suggesting selective accumulation and chemical modification of sponge metabolites.
Collapse
Affiliation(s)
- Michael P Gotsbacher
- Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Peter Karuso
- Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
26
|
Su TR, Liao ZJ, Lu MC, Wu YJ, Su JH. Cytotoxic Monocarbocyclic Sesterterpenoids from a Marine Sponge Luffariella sp. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tzu-Rong Su
- Department of Beauty Science, Meiho University
- Antai Medical Care Cooperation, Antai Tian-Sheng Memorial Hospital
| | - Zuo-Jian Liao
- Graduate Institute of Marine Biology, National Dong Hwa University
- National Museum of Marine Biology & Aquarium
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University
- National Museum of Marine Biology & Aquarium
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University
| | - Jui-Hsin Su
- Graduate Institute of Marine Biology, National Dong Hwa University
- National Museum of Marine Biology & Aquarium
| |
Collapse
|
27
|
Chiu CW, Su HJ, Lu MC, Wang WH, Sheu JH, Su JH. Cytotoxic Polyacetylenes from a Formosan Marine Sponge Callyspongia sp. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ching-Wen Chiu
- Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University
| | | | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University
- National Museum of Marine Biology and Aquarium
| | - Wei-Hsien Wang
- Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University
- Department of Medical Research, China Medical University Hospital, China Medical University
- Graduate Institute of Natural Products, Kaohsiung Medical University
| | - Jui-Hsin Su
- Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University
- Graduate Institute of Marine Biotechnology, National Dong Hwa University
- National Museum of Marine Biology and Aquarium
| |
Collapse
|
28
|
Pregnane-type steroids from the Formosan soft coral Scleronephthya flexilis. Int J Mol Sci 2014; 15:10136-49. [PMID: 24914763 PMCID: PMC4100144 DOI: 10.3390/ijms150610136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022] Open
Abstract
Three pregnane-type steroids, including a new metabolite, 3β-methoxy-5,20-pregnadiene (1) along with two known analogues, 3β-acetoxy-5,20-pregnadiene (2) and 5α-pregna-1,20-dien-3-one (3) were isolated from the soft coral Scleronephthya flexilis. Standard spectroscopic techniques were used to determine the structure of new steroid 1. The absolute stereochemistry of steroid 2 was confirmed by X-ray diffraction analysis. Steroid 3 exhibited potent activity against MOLT-4 tumor cells.
Collapse
|
29
|
Cracking the cytotoxicity code: apoptotic induction of 10-acetylirciformonin B is mediated through ROS generation and mitochondrial dysfunction. Mar Drugs 2014; 12:3072-90. [PMID: 24857964 PMCID: PMC4052332 DOI: 10.3390/md12053072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/04/2014] [Accepted: 04/16/2014] [Indexed: 12/23/2022] Open
Abstract
A marine furanoterpenoid derivative, 10-acetylirciformonin B (10AB), was found to inhibit the proliferation of leukemia, hepatoma, and colon cancer cell lines, with selective and significant potency against leukemia cells. It induced DNA damage and apoptosis in leukemia HL 60 cells. To fully understand the mechanism behind the 10AB apoptotic induction against HL 60 cells, we extended our previous findings and further explored the precise molecular targets of 10AB. We found that the use of 10AB increased apoptosis by 8.9%-87.6% and caused disruption of mitochondrial membrane potential (MMP) by 15.2%-95.2% in a dose-dependent manner, as demonstrated by annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of HL 60 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by 10AB, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of 10AB. The results of a cell-free system assay indicated that 10AB could act as a topoisomerase catalytic inhibitor through the inhibition of topoisomerase IIα. On the protein level, the expression of the anti-apoptotic proteins Bcl-xL and Bcl-2, caspase inhibitors XIAP and survivin, as well as hexokinase II were inhibited by the use of 10AB. On the other hand, the expression of the pro-apoptotic protein Bax was increased after 10AB treatment. Taken together, our results suggest that 10AB-induced apoptosis is mediated through the overproduction of ROS and the disruption of mitochondrial metabolism.
Collapse
|
30
|
Chen TH, Chen WF, Wen ZH, Lu MC, Wang WH, Li JJ, Wu YC, Sung PJ. Cladieunicellins M-Q, new eunicellins from Cladiella sp. Mar Drugs 2014; 12:2144-55. [PMID: 24717524 PMCID: PMC4012457 DOI: 10.3390/md12042144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 01/22/2023] Open
Abstract
Five new 7α-hydroxyeunicellin-based diterpenoids, designated as cladieunicellins M–Q (1–5), were isolated from a Formosan octocoral Cladiella sp. The structures of 1–5 were elucidated on the basis of spectroscopic methods and by comparison of the data with those of the related metabolites. Cytotoxicity of metabolites 1–5 against the human leukemia Molt 4 and HL 60 is also described. Among them, compounds 1, 3 and 5 exhibited moderate cytotoxicity toward Molt 4 cells with IC50 values 16.43, 14.17 and 15.55 μM, respectively. Preliminary SAR (structure activity relationship) information was obtained from these compounds and their analogues.
Collapse
Affiliation(s)
- Tsung-Hung Chen
- Graduate Institute of Marine Biotechnology, Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Jan-Jung Li
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biotechnology, Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
| |
Collapse
|