1
|
Innella K, Levidy MF, Kadkoy Y, Lin A, Selles M, Sanchez A, Weiner A, Greendyk J, Moriarty B, Lauritsen K, Lopez J, Teitelbaum M, Fisher M, Mendiratta D, Ahn DB, Ippolitto J, Paglia DN, Cottrell J, O'Connor JP, Benevenia J, Lin SS. Local zinc treatment enhances fracture callus properties in diabetic rats. J Orthop Res 2022. [PMID: 36515300 DOI: 10.1002/jor.25499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The effects of locally applied zinc chloride (ZnCl2 ) on early and late-stage parameters of fracture healing were evaluated in a diabetic rat model. Type 1 Diabetes has been shown to negatively impact mechanical parameters of bone as well as biologic markers associated with bone healing. Zinc treatments have been shown to reverse those outcomes in tests of nondiabetic and diabetic animals. This study is the first to assess the efficacy of a noncarrier mediated ZnCl2 on bony healing in diabetic animals. This is a promising basic science approach which may lead to benefits for diabetic patients in the future. Treatment and healing were assessed through quantification of callus zinc, radiographic scoring, microcomputed tomography (µCT), histomorphometry, and mechanical testing. Local ZnCl2 treatment increased callus zinc levels at 1 and 3 days after fracture (p ≤ 0.025). Femur fractures treated with ZnCl2 showed increased mechanical properties after 4 and 6 weeks of healing. Histomorphometry of the ZnCl2 -treated fractures found increased callus cartilage area at Day 7 (p = 0.033) and increased callus bone area at Day 10 (p = 0.038). In contrast, callus cartilage area was decreased (p < 0.01) after 14 days in the ZnCl2 -treated rats. µCT analysis showed increased bone volume in the fracture callus of ZnCl2 -treated rats at 6 weeks (p = 0.0012) with an associated increase in the proportion of µCT voxel axial projections (Z-rays) spanning the fracture site. The results suggest that local ZnCl2 administration improves callus chondrogenesis leading to greater callus bone formation and improved fracture healing in diabetic rats.
Collapse
Affiliation(s)
- Kevin Innella
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Michael F Levidy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yazan Kadkoy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Anthony Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marcus Selles
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Alexandra Sanchez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adam Weiner
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joshua Greendyk
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Brian Moriarty
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katherine Lauritsen
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jonathan Lopez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marc Teitelbaum
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mark Fisher
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dhruv Mendiratta
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David B Ahn
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Ippolitto
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David N Paglia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica Cottrell
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - J Patrick O'Connor
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Benevenia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sheldon S Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
2
|
Simultaneous Substitution of Fe and Sr in Beta-Tricalcium Phosphate: Synthesis, Structural, Magnetic, Degradation, and Cell Adhesion Properties. MATERIALS 2022; 15:ma15134702. [PMID: 35806825 PMCID: PMC9268321 DOI: 10.3390/ma15134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
β-tricalcium phosphate is a promising bone graft substitute material with biocompatibility and high osteoinductivity. However, research on the ideal degradation and absorption for better clinical application remains a challenge. Now, we focus on modifying physicochemical properties and improving biological properties through essential ion co-substitution (Fe and Sr) in β-TCPs. Fe- and Sr-substituted and Fe/Sr co-substituted β-TCP were synthesized by aqueous co-precipitation with substitution levels ranging from 0.2 to 1.0 mol%. The β-TCP phase was detected by X-ray diffraction and Fourier transform infrared spectroscopy. Changes in Ca–O and P–O bond lengths of the co-substituted samples were observed through X-ray photoelectron spectroscopy. The results of VSM represent the M-H graph having a combination of diamagnetic and ferromagnetic properties. A TRIS–HCl solution immersion test showed that the degradation and resorption functions act synergistically on the surface of the co-substituted sample. Cell adhesion tests demonstrated that Fe enhances the initial adhesion and proliferation behavior of hDPSCs. The present work suggests that Fe and Sr co-substitution in β-TCP can be a candidate for promising bone graft materials in tissue engineering fields. In addition, the possibility of application of hyperthermia for cancer treatment can be expected.
Collapse
|
3
|
Lodoso-Torrecilla I, Klein Gunnewiek R, Grosfeld EC, de Vries RBM, Habibović P, Jansen JA, van den Beucken JJJP. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve in vivo performance: a systematic review and meta-analysis of animal studies. Biomater Sci 2020; 8:4792-4809. [PMID: 32729591 DOI: 10.1039/d0bm00599a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or silicon is an interesting approach to increase the biological performance in terms of bone regenerative potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this approach has not been systematically analyzed, yet. Consequently, we performed a systematic review using the available literature regarding the effect of bioinorganic supplementation in CaP-based biomaterials on new bone formation and material degradation in preclinical animal bone defect models and studied this effect quantitatively by performing a meta-analysis. Additional subgroup analyses were used to study the effect of different bioinorganics, animal model, or phase category of CaP-based biomaterial on bone formation or material degradation. Results show that bioinorganic supplementation increases new bone formation (standardized mean difference [SMD]: 1.43 SD, confidence interval [CI]: 1.13-1.73). Additional subgroup analysis showed that strontium, magnesium and silica significantly enhanced bone formation, while zinc did not have any effect. This effect of bioinorganic supplementation on new bone formation was stronger for DCPD or β-TCP and biphasic CaPs than for HA or α-TCP (p < 0.001). In general, material degradation was slightly hindered by bioinorganic supplementation (mean difference [MD]: 0.84%, CI: 0.01-1.66), with the exception of strontium that significantly enhanced degradation. Overall, bioinorganic supplementation represents an effective approach to enhance the biological performance of CaP-based bone substitutes.
Collapse
|
4
|
Safiaghdam H, Nokhbatolfoghahaei H, Khojasteh A. Therapeutic Metallic Ions in Bone Tissue Engineering: A Systematic Review of The Literature. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:101-118. [PMID: 32802092 PMCID: PMC7393040 DOI: 10.22037/ijpr.2020.112641.13894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An important field of bone tissue engineering (BTE) concerns the design and fabrication of smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor cells. One of these additives that has gained growing attention is metallic ions as therapeutic agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as other potential mechanical, and antimicrobial enhancements may vary depending on the ion entity, fabrication method, and biomaterials used. Therefore, this article provides an overview on current status of In-vivo application of MITAs in BTE and the remaining challenges in the field. Electronic databases, including PubMed, Scopus, Science direct and Cochrane library were searched for studies on MITAs treatments for BTE. We searched for articles in English from January-2000 to October-2019. Abstracts, letters, conference papers and reviews, In-vitro studies, studies on alloys and studies investigating effects other than enhancement of new bone formation (NBF) were excluded. A detailed summary of relevant metallic ions with specific scaffold material and design, cell type, animal model and defect type, the implantation period, measured parameters and obtained qualitative and quantitative results is presented. No ideal material or fabrication method suited to deliver MITAs can yet be agreed upon, but an investigation into various systems and their drawbacks or potential advantages can lead the future research. A tendency to enhance NBF with MITAs can be observed in the studies. However, this needs to be validated with further studies comparing various ions with each other in the same animal model using critical-sized defects.
Collapse
Affiliation(s)
- Hannaneh Safiaghdam
- Student Research Committee, Dental school, Shahid Beheshti university of medical sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
6
|
Trincă LC, Mareci D, Solcan C, Fantanariu M, Burtan L, Vulpe V, Hriţcu LD, Souto RM. RETRACTED: In vitro corrosion resistance and in vivo osseointegration testing of new multifunctional beta-type quaternary TiMoZrTa alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110485. [PMID: 31924054 DOI: 10.1016/j.msec.2019.110485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/26/2018] [Accepted: 11/21/2019] [Indexed: 02/02/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of authors. Due to communication issues between Professor dr. Lucia Carmen Trincă and Professor dr. Vizureanu Petrica and Assist. dr. Bălţatu Simona, the first author was not aware that the specimens processed by corrosion by Assoc. Professor dr. Daniel Mareci and evaluated in the aforementioned article would be included by Assistant dr. Bălţatu Simona in her PhD thesis that was defended in June 2017 and then in an international patent application (Indonesia) No: PI 2019006569, in November 2019. The authors understand and respect the intellectual property rights of the international (Indonesia) patent application holders no: PI 2019006569/2019 and thus request the retraction of the article.
Collapse
Affiliation(s)
- Lucia Carmen Trincă
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Exact Sciences Department, 700490, Iasi, Romania.
| | - Daniel Mareci
- "Gheorghe Asachi" Technical University of Iasi, Department of Chemical Engineering, 700050, Iasi, Romania
| | - Carmen Solcan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Preclinics Department, 700489, Iasi, Romania
| | - Mircea Fantanariu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Liviu Burtan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania.
| | - Vasile Vulpe
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Luminiţa-Diana Hriţcu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Ricardo Manuel Souto
- Department of Chemistry, Universidad de La Laguna, Avda. Astrofisico Sanchez s/n, 38205 La Laguna, Tenerife (Canary Islands), Spain; Instituto Universitario de Materiales y Nanotecnologias, Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Tenerife (Canary Islands), Spain.
| |
Collapse
|
7
|
Martinez-Zelaya VR, Zarranz L, Herrera EZ, Alves AT, Uzeda MJ, Mavropoulos E, Rossi AL, Mello A, Granjeiro JM, Calasans-Maia MD, Rossi AM. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. Int J Nanomedicine 2019; 14:3471-3490. [PMID: 31190805 PMCID: PMC6524140 DOI: 10.2147/ijn.s197157] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/01/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Zinc-doped hydroxyapatite has been proposed as a graft biomaterial for bone regeneration. However, the effect of zinc on osteoconductivity is still controversial, since the release and resorption of calcium, phosphorus, and zinc in graft-implanted defects have rarely been studied. Methods: Microspheres containing alginate and either non-doped carbonated hydroxyapatite (cHA) or nanocrystalline 3.2 wt% zinc-doped cHA (Zn-cHA) were implanted in critical-sized calvarial defects in Wistar rats for 1, 3, and 6 months. Histological and histomorphometric analyses were performed to evaluate the volume density of newly formed bone, residual biomaterial, and connective tissue formation. Biomaterial degradation was characterized by transmission electron microscopy (TEM) and synchrotron radiation-based X-ray microfluorescence (SR-µXRF), which enabled the elemental mapping of calcium, phosphorus, and zinc on the microsphere-implanted defects at 6 months post-implantation. Results: The bone repair was limited to regions close to the preexistent bone, whereas connective tissue occupied the major part of the defect. Moreover, no significant difference in the amount of new bone formed was found between the two microsphere groups. TEM analysis revealed the degradation of the outer microsphere surface with detachment of the nanoparticle aggregates. According to SR-µXRF, both types of microspheres released high amounts of calcium, phosphorus, and zinc, distributed throughout the defective region. The cHA microsphere surface strongly adsorbed the zinc from organic constituents of the biological fluid, and phosphorus was resorbed more quickly than calcium. In the Zn-cHA group, zinc and calcium had similar release profiles, indicating a stoichiometric dissolution of these elements and non-preferential zinc resorption. Conclusions: The nanometric size of cHA and Zn-cHA was a decisive factor in accelerating the in vivo availability of calcium and zinc. The high calcium and zinc accumulation in the defect, which was not cleared by the biological medium, played a critical role in inhibiting osteoconduction and thus impairing bone repair.
Collapse
Affiliation(s)
- Victor R Martinez-Zelaya
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro, RJ, Brazil
| | - Laila Zarranz
- Dental Clinical Research Center, Oral Diagnosis Department and Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Edher Z Herrera
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro, RJ, Brazil
| | - Adriana T Alves
- Dental Clinical Research Center, Oral Diagnosis Department and Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Marcelo José Uzeda
- Dental Clinical Research Center, Oral Diagnosis Department and Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Elena Mavropoulos
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro, RJ, Brazil
| | - André L Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro, RJ, Brazil
| | - Alexandre Mello
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro, RJ, Brazil
| | - José M Granjeiro
- Dental Clinical Research Center, Oral Diagnosis Department and Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi, RJ, Brazil.,National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ, Brazil
| | - Monica D Calasans-Maia
- Dental Clinical Research Center, Oral Diagnosis Department and Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Alexandre M Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Diab M, Shreteh K, Volokh M, Abramovich S, Abdu U, Mokari T. Calcareous Foraminiferal Shells as a Template for the Formation of Hierarchal Structures of Inorganic Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6456-6462. [PMID: 30694641 DOI: 10.1021/acsami.8b22138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A microorganism template approach has been explored for the fabrication of various well-defined three-dimensional (3D) structures. However, most of these templates suffer from small size (few μm), difficulty to remove the template, or low surface area, which affect their potential use in different applications or makes industrial scale-up difficult. Conversely, foraminifer's microorganisms are large (up to 200 mm), consist of CaCO3 (easy to dissolve in mild acid), and have a relatively high surface area (≈5 m2 g-1). Herein, we demonstrate the formation of hierarchical structures of inorganic materials using calcareous foraminiferal shells such as Sorites, Globigerinella siphonifera, Lox-ostomina amygdaleformis, Calcarina baculatus or hispida, and Peneroplis planatus. Several techniques, such as thermal decomposition of single-source precursors of metal oxides or sulfides, reduction of metal salts directly on the surfaces, and redox reactions, were used for coating of different shell materials and several hybrid compositions, which possess nanofeatures. Finally, we examined the role of the prepared 3D structures on the reduction of 4-nitrophenol (4-NP), ethanol electrooxidation, and water purification. A remarkable performance was achieved in each application. The hierarchical structure leads to the reduction of 4-NP within several minutes, a 27 mA cm-2 current density peak was obtained for ethanol electrooxidation, and more than 95% of the organic dye contaminants were successfully removed. These results show that using foraminiferal shells offers a new way for designing complex hierarchical structures with unique properties.
Collapse
|
9
|
Diab M, Mokari T. Bioinspired Hierarchical Porous Structures for Engineering Advanced Functional Inorganic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706349. [PMID: 29923350 DOI: 10.1002/adma.201706349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Tremendous efforts have been directed at designing functional and well-defined 3D structures in recent decades. Many approaches have been devised and are currently used to create 3D structures, including lithography, 3D printing, assembly, and template-mediated (natural or synthetic) methods. Natural scaffolds offer some unique traits, as compared to their artificial counterparts, presenting highly ordered, porous, identical, abundant, and diverse structures. Various organisms, such as viruses, bacteria, diatoms, foraminifera, and others, are used as templates to form 3D structures. Herein, advancements made in using the shell of marine microorganisms, diatoms, and foraminifera, as scaffolds for designing functional 3D structures are reported. Furthermore, a succinct overview of various synthetic methods used to coat these scaffolds with inorganic materials (i.e., metals, metal oxides, and metal sulfides) is provided. Finally, the use of such fabricated functional 3D structures in a wide range of applications, such as catalysis, sensing, drug delivery, photo-electrochemical uses, batteries, and others, is considered.
Collapse
Affiliation(s)
- Mahmud Diab
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Taleb Mokari
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
10
|
Hinostroza Ramos JV, Anselme K, Simon-Masseron A, Ploux L. Bio-sourced phosphoprotein-based synthesis of silver-doped macroporous zinc phosphates and their antibacterial properties. RSC Adv 2018; 8:25112-25122. [PMID: 35542135 PMCID: PMC9082325 DOI: 10.1039/c8ra04438d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/10/2018] [Indexed: 11/21/2022] Open
Abstract
The usual sources of phosphorus for metal phosphates are obtained from phosphate rocks, of which resources are depleted. As a substitute for these mineral sources, an original method of synthesis has been developed to prepare macroporous zinc phosphates using casein phosphoprotein. This bio-sourced reactant plays during the synthesis the roles of both a phosphorus source and a reducing agent for silver nanoparticles. Thus, zinc phosphates loaded with different Ag contents (up to 6.4 wt%) are prepared via hydrothermal treatment at 100 °C. Silver nanoparticles co-crystallized with hopeite, Zn3(PO4)2 and/or Zn2P2O7. In addition, casein induces porosity within the zinc phosphate framework and provides macropores (diameter of >50 nm) during calcination. The antibacterial properties against Escherichia coli K12 bacteria of Ag-containing and Ag-free porous zinc phosphates (calcined at 750 °C) were also tested for the first time.
Collapse
Affiliation(s)
| | - Karine Anselme
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 F-68100 Mulhouse France
- Université de Strasbourg France
| | - Angélique Simon-Masseron
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 F-68100 Mulhouse France
- Université de Strasbourg France
| | - Lydie Ploux
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 F-68100 Mulhouse France
- Université de Strasbourg France
| |
Collapse
|
11
|
O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH. The roles of ions on bone regeneration. Drug Discov Today 2018; 23:879-890. [DOI: 10.1016/j.drudis.2018.01.049] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
|
12
|
Abstract
BACKGROUND This study examined the efficacy of calcium sulfate (CaSO4) as a carrier for intramedullary delivery of zinc chloride (ZnCl2) to treat fracture healing in a BB Wistar rat model. A non-carrier-mediated injection of 3.0 mg/kg of ZnCl2 has previously been shown to enhance fracture healing. METHODS A heterogeneous mixture of ZnCl2 and CaSO4 was administered into the intramedullary femoral canal and a mid-diaphyseal femur fracture was created unilaterally. Early and late parameters of fracture healing were assessed using biomechanical testing, radiographic scoring, quantitative histomorphometry (for percentage of new cartilage and bone within the fracture callus), and long-term histologic evaluation. RESULTS Fractures treated with 1.0 mg/kg of ZnCl2/CaSO4 demonstrated a significantly higher maximum torque to failure compared with both CaSO4 (P = 0.048) and saline (P = 0.005) controls at 4 weeks postfracture (396.4 versus 251.3 versus 178.7 N mm, respectively). Statistically significant increases in torsional rigidity, effective shear modulus, and effective shear stress were also found, as well as a 3.5 times increase in radiographic score (based on bone union). Histologic examination of the fracture callus indicated enhanced chondrogenesis at day 14 postfracture, with increased percent cartilage for the ZnCl2/CaSO4 group compared with saline (P = 0.0004) and CaSO4 (P = 0.0453) controls. Long-term radiographic and histologic evaluation revealed no abnormal bone formation or infection up to 12 weeks postoperatively. CONCLUSIONS The effective dose of ZnCl2 augmentation for the enhancement of fracture healing in rats was reduced 3-fold in this study compared with previous findings. Furthermore, CaSO4 acted synergistically with ZnCl2 to increase the mechanical strength and stability at the fracture site.
Collapse
|
13
|
Shuai C, Cao Y, Dan G, Gao C, Feng P, Wu P. Improvement in degradability of 58s glass scaffolds by ZnO and β-TCP modification. Bioengineered 2016; 7:342-351. [PMID: 27710432 DOI: 10.1080/21655979.2016.1197032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
58s bioactive glass shows great potential for bone defects repair. However, at early repairing stage, the degradation rate of 58s glass is too fast due to the fast ion-exchange. At later repairing stage, the degradation rate of 58s glass is too slow due to the high dense mineral layer. In this work, Zinc oxide (ZnO) and β-tricalcium phosphate (β-TCP) were introduced into 58s glass bone scaffolds to improve the degradability. The results showed that ZnO could decrease the degradation rate and promote the stability of 58s glass at early repairing stage. Moreover, the presence of β-TCP appeared to increase the degradation rate at a later stage of repairing. Furthermore, in vitro biocompatibility study, carried out using human osteoblast-like cells (MG63), demonstrated that ZnO and β-TCP enhanced cell attachment and proliferation. The study provided a reference for further research in bone tissue engineering.
Collapse
Affiliation(s)
- Cijun Shuai
- a State Key Laboratory of High Performance Complex Manufacturing, Central South University , Changsha , P.R. China.,c Shenzhen Research Institute, Central South University , Shenzhen , P.R. China
| | - Yiyuan Cao
- a State Key Laboratory of High Performance Complex Manufacturing, Central South University , Changsha , P.R. China
| | - Gao Dan
- d School of Basic Medical Science, Central South University , Changsha , P.R. China
| | - Chengde Gao
- a State Key Laboratory of High Performance Complex Manufacturing, Central South University , Changsha , P.R. China
| | - Pei Feng
- a State Key Laboratory of High Performance Complex Manufacturing, Central South University , Changsha , P.R. China
| | - Ping Wu
- b College of Chemistry, Xiangtan University , Xiangtan , P.R. China
| |
Collapse
|
14
|
Green DW, Lee JM, Jung HS. Marine Structural Biomaterials in Medical Biomimicry. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:438-50. [PMID: 25905922 DOI: 10.1089/ten.teb.2015.0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.
Collapse
Affiliation(s)
- David W Green
- 1 Oral Biosciences, Faculty of Dentistry, The University of Hong Kong , Sai Ying Pun, Hong Kong, SAR .,2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS project, Oral Science Research Institute, Yonsei University College of Dentistry , Seoul, Korea
| | - Jong-Min Lee
- 2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS project, Oral Science Research Institute, Yonsei University College of Dentistry , Seoul, Korea
| | - Han-Sung Jung
- 1 Oral Biosciences, Faculty of Dentistry, The University of Hong Kong , Sai Ying Pun, Hong Kong, SAR .,2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS project, Oral Science Research Institute, Yonsei University College of Dentistry , Seoul, Korea
| |
Collapse
|
15
|
Lozano D, Sánchez-Salcedo S, Portal-Núñez S, Vila M, López-Herradón A, Ardura JA, Mulero F, Gómez-Barrena E, Vallet-Regí M, Esbrit P. Parathyroid hormone-related protein (107-111) improves the bone regeneration potential of gelatin-glutaraldehyde biopolymer-coated hydroxyapatite. Acta Biomater 2014; 10:3307-16. [PMID: 24704694 DOI: 10.1016/j.actbio.2014.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
Biopolymer-coated nanocrystalline hydroxyapatite (HA) made as macroporous foams which are degradable and flexible are promising candidates as orthopaedic implants. The C-terminal (107-111) epitope of parathyroid hormone-related protein (PTHrP) exhibits osteogenic properties. The main aim of this study was to evaluate whether PTHrP (107-111) loading into gelatin-glutaraldehyde biopolymer-coated HA (HAGlu) scaffolds would produce an optimal biomaterial for tissue engineering applications. HAGlu scaffolds with and without PTHrP (107-111) were implanted into a cavitary defect performed in both distal tibial metaphysis of adult rats. Animals were sacrificed after 4 weeks for histological, microcomputerized tomography and gene expression analysis of the callus. At this time, bone healing occurred only in the presence of PTHrP (107-111)-containing HAGlu implant, related to an increase in bone volume/tissue volume and trabecular thickness, cortical thickness and gene expression of osteocalcin and vascular cell adhesion molecule 1, but a decreased gene expression of Wnt inhibitors, SOST and dickkopf homolog 1. The autonomous osteogenic effect of the PTHrP (107-111)-loaded HAGlu scaffolds was confirmed in mouse and human osteoblastic cell cultures. Our findings demonstrate the advantage of loading PTHrP (107-111) into degradable HAGlu scaffolds for achieving an optimal biomaterial that is promising for low load bearing clinical applications.
Collapse
Affiliation(s)
- Daniel Lozano
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and Instituto de Salud Carlos III-RETICEF, Avenida Reyes Católicos, 2, 28040, Madrid, Spain; Grupo de Investigación de Cirugía Osteo-Articular, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Sandra Sánchez-Salcedo
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación perteneciente a la Red de Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - Sergio Portal-Núñez
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and Instituto de Salud Carlos III-RETICEF, Avenida Reyes Católicos, 2, 28040, Madrid, Spain
| | - Mercedes Vila
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación perteneciente a la Red de Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - Ana López-Herradón
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and Instituto de Salud Carlos III-RETICEF, Avenida Reyes Católicos, 2, 28040, Madrid, Spain
| | - Juan Antonio Ardura
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and Instituto de Salud Carlos III-RETICEF, Avenida Reyes Católicos, 2, 28040, Madrid, Spain
| | - Francisca Mulero
- Unidad de Imagen Molecular, Centro Nacional de Investigaciones Oncológicas (CNIO), Calle de Melchor Fernandez Almagro3, 28029, Madrid, Spain
| | - Enrique Gómez-Barrena
- Grupo de Investigación de Cirugía Osteo-Articular, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación perteneciente a la Red de Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain.
| | - Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz and Instituto de Salud Carlos III-RETICEF, Avenida Reyes Católicos, 2, 28040, Madrid, Spain
| |
Collapse
|
16
|
Chou J, Hao J, Kuroda S, Ben-Nissan B, Milthopre B, Otsuka M. Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres. J Tissue Eng 2014; 5:2041731414523441. [PMID: 24808939 PMCID: PMC4012694 DOI: 10.1177/2041731414523441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/17/2014] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to examine the bone regeneration properties of beta-tricalcium phosphate hydrothermally converted from foraminifera carbonate exoskeleton in the repair of rat calvarial defect. These natural materials possess unique interconnected porous network with uniform pore size distribution, which can be potentially advantageous. In total, 20 adult male Wistar rats received full-thickness calvarial defect with a diameter of 5 mm. The rate of newly formed bone was measured radiologically by X-ray and micro-computed tomography and by histologic examination. After 2 weeks, the beta-tricalcium phosphate group exhibited full closure of the defect site, while control group remained unrestored at the end of the 6-week experimentation. It was observed that the newly regenerated bone thickened over the course of the experiment in the beta-tricalcium phosphate group. No soft tissue reaction was observed around the beta-tricalcium phosphate implant and the rats remained healthy. These results showed that repair of the calvarial defect can be achieved by biomimetic beta-tricalcium phosphate macrospheres, which hold potential for application as bone grafts for bone augmentation surgeries.
Collapse
Affiliation(s)
- Joshua Chou
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, Japan ; Faculty of Science, University of Technology, Sydney, Sydney, NSW, Australia
| | - Jia Hao
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kuroda
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Besim Ben-Nissan
- Faculty of Science, University of Technology, Sydney, Sydney, NSW, Australia
| | - Bruce Milthopre
- Faculty of Science, University of Technology, Sydney, Sydney, NSW, Australia
| | - Makoto Otsuka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, Japan
| |
Collapse
|