1
|
Jimenez-Guri E, Murano C, Paganos P, Arnone MI. PVC pellet leachates affect adult immune system and embryonic development but not reproductive capacity in the sea urchin Paracentrotus lividus. MARINE POLLUTION BULLETIN 2023; 196:115604. [PMID: 37820449 DOI: 10.1016/j.marpolbul.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Microplastic pollution is a major concern of our age, eliciting a range of effects on organisms including during embryonic development. Plastic preproduction pellets stunt the development of sea urchins through the leaching of teratogenic compounds. However, the effect of these leachates on adult sea urchins and their fertility is unknown. Here we investigate the effect of PVC leachates on the capacity to produce normal embryos, and demonstrate that adults kept in contaminated water still produce viable offspring. However, we observe a cumulative negative effect by continued exposure to highly polluted water: adult animals had lower counts and disturbed morphological profiles of immune cells, were under increased oxidative stress, and produced embryos less tolerant of contaminated environments. Our findings suggest that even in highly polluted areas, sea urchins are fertile, but that sublethal effects seen in the adults may lead to transgenerational effects that reduce developmental robustness of the embryos.
Collapse
Affiliation(s)
- Eva Jimenez-Guri
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
Cell Death and Metabolic Stress in Gymnodinium catenatum Induced by Allelopathy. Toxins (Basel) 2021; 13:toxins13070506. [PMID: 34357978 PMCID: PMC8310274 DOI: 10.3390/toxins13070506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
Allelopathy between phytoplankton species can promote cellular stress and programmed cell death (PCD). The raphidophyte Chattonella marina var. marina, and the dinoflagellates Margalefidinium polykrikoides and Gymnodinium impudicum have allelopathic effects on Gymnodinium catenatum; however, the physiological mechanisms are unknown. We evaluated whether the allelopathic effect promotes cellular stress and activates PCD in G. catenatum. Cultures of G. catenatum were exposed to cell-free media of C. marina var. marina, M. polykrikoides and G. impudicum. The mortality, superoxide radical (O2●-) production, thiobarbituric acid reactive substances (TBARS) levels, superoxide dismutase (SOD) activity, protein content, and caspase-3 activity were quantified. Mortality (between 57 and 79%) was registered in G. catenatum after exposure to cell-free media of the three species. The maximal O2●- production occurred with C. marina var. marina cell-free media. The highest TBARS levels and SOD activity in G. catenatum were recorded with cell-free media from G. impudicum. The highest protein content was recorded with cell-free media from M. polykrikoides. All cell-free media caused an increase in the activity of caspase-3. These results indicate that the allelopathic effect in G. catenatum promotes cell stress and caspase-3 activation, as a signal for the induction of programmed cell death.
Collapse
|
3
|
Murano C, Donnarumma V, Corsi I, Casotti R, Palumbo A. Impact of Microbial Colonization of Polystyrene Microbeads on the Toxicological Responses in the Sea Urchin Paracentrotus lividus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7990-8000. [PMID: 34018718 DOI: 10.1021/acs.est.1c00618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sea urchin Paracentrotus lividus (P. lividus) was exposed to either virgin or biofilm-covered polystyrene microbeads (micro-PS, 45 μm) in order to test the effect of microbial colonization on the uptake, biodistribution, and immune response. The biofilm was dominated by bacteria, as detected by scanning electron microscopy and 16S rRNA sequencing. A higher internalization rate of colonized micro-PS inside sea urchins compared to virgin ones was detected, suggesting a role of the plastisphere in the interaction. Colonized and virgin micro-PS showed the same biodistribution pattern by accumulating mainly in the digestive system with higher levels and faster egestion rates for the colonized. However, a significant increase of catalase and total antioxidant activity was observed only in the digestive system of colonized micro-PS-exposed individuals. Colonized micro-PS also induced a significant decrease in the number of coelomocytes with a significant increase in vibratile cells, compared to control and virgin micro-PS-exposed animals. Moreover, a general time-dependent increase in the red/white amoebocytes ratio and reactive oxygen species and a decrease in nitrogen ones were observed upon exposure to both colonized and virgin micro-PS. Overall, micro-PS colonization clearly affected the uptake and toxicological responses of the Mediterranean sea urchin P. lividus in comparison to virgin micro-PS.
Collapse
Affiliation(s)
- Carola Murano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Vincenzo Donnarumma
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Raffaella Casotti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| |
Collapse
|
4
|
Milito A, Orefice I, Smerilli A, Castellano I, Napolitano A, Brunet C, Palumbo A. Insights into the Light Response of Skeletonema marinoi: Involvement of Ovothiol. Mar Drugs 2020; 18:md18090477. [PMID: 32962291 PMCID: PMC7551349 DOI: 10.3390/md18090477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Cerdanyola, 08193 Barcelona, Spain
- Correspondence: or (A.M.); (A.P.); Tel.: +39-081-5833 (ext. 293/276) (A.M.)
| | - Ida Orefice
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Arianna Smerilli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: or (A.M.); (A.P.); Tel.: +39-081-5833 (ext. 293/276) (A.M.)
| |
Collapse
|
5
|
Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Mar Drugs 2020; 18:md18070342. [PMID: 32629777 PMCID: PMC7401250 DOI: 10.3390/md18070342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth’s photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant–plant and plant–animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.
Collapse
|
6
|
Early dynamics of photosynthetic Lhcf2 and Lhcf15 transcription and mRNA stabilities in response to herbivory-related decadienal in Phaeodactylum tricornutum. Sci Rep 2020; 10:2029. [PMID: 32029835 PMCID: PMC7005025 DOI: 10.1038/s41598-020-58885-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Abiotic and biotic stresses widely reduce light harvesting complex (LHC) gene expression in higher plants and algae. However, control mechanisms and functions of these changes are not well understood. During herbivory, marine diatom species release oxylipins that impair grazer reproduction and serve as signaling molecules to nearby undamaged diatoms. To examine LHC mRNA regulation by oxylipin exposure, the diatom Phaeodactylum tricornutum was treated with a sublethal concentration of trans,trans-2,4-decadienal (DD) during the light cycle. Transcriptome analyses revealed extensive suppression of LHC mRNAs and a smaller set of up-regulated LHC mRNAs at 3 h. For two divergently regulated LHCF antennae family mRNAs, in vivo 4-thiouracil metabolic labeling was used to distinguish synthesis and degradation rates. Within 3 h of DD exposure, Lhcf2 mRNA levels and transcription were strongly suppressed and its mRNA half-life decreased. In contrast, Lhcf15 mRNA mainly accumulated between 3-9 h, its transcription increased and its mRNA was highly stabilized. Hence, DD-treated cells utilized transcriptional and mRNA stability control mechanisms which were likely major factors in the differing Lhcf2 and Lhcf15 expression patterns. Widespread LHC mRNA regulation and possible effects on photosynthesis may contribute to enhanced fitness in cells impacted by herbivory and other stresses.
Collapse
|
7
|
Ruocco N, Nuzzo G, d’Ippolito G, Manzo E, Sardo A, Ianora A, Romano G, Iuliano A, Zupo V, Costantini M, Fontana A. Lipoxygenase Pathways in Diatoms: Occurrence and Correlation with Grazer Toxicity in Four Benthic Species. Mar Drugs 2020; 18:md18010066. [PMID: 31963814 PMCID: PMC7024367 DOI: 10.3390/md18010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Oxygenated derivatives of fatty acids, collectively called oxylipins, are a highly diverse family of lipoxygenase (LOX) products well described in planktonic diatoms. Here we report the first investigation of these molecules in four benthic diatoms, Cylindrotheca closterium, Nanofrustulum shiloi, Cocconeis scutellum, and Diploneis sp. isolated from the leaves of the seagrass Posidonia oceanica from the Gulf of Naples. Analysis by hyphenated MS techniques revealed that C. closterium, N. shiloi, and C. scutellum produce several polyunsaturated aldehydes (PUAs) and linear oxygenated fatty acids (LOFAs) related to the products of LOX pathways in planktonic species. Diploneis sp. also produced other unidentified fatty acid derivatives that are not related to LOX metabolism. The levels and composition of oxylipins in the benthic species match their negative effects on the reproductive success in the sea urchin Paracentrotus lividus. In agreement with this correlation, the most toxic species N. shiloi revealed the same LOX pathways of Skeletonema marinoi and Thalassiosira rotula, two bloom-forming planktonic diatoms that affect copepod reproduction. Overall, our data highlight for the first time a major role of oxylipins, namely LOFAs, as info-chemicals for benthic diatoms, and open new perspectives in the study of the structuring of benthic communities.
Collapse
Affiliation(s)
- Nadia Ruocco
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; (N.R.); (G.N.); (G.d.); (E.M.); (A.S.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (A.I.); (V.Z.); (M.C.)
| | - Genoveffa Nuzzo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; (N.R.); (G.N.); (G.d.); (E.M.); (A.S.)
| | - Giuliana d’Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; (N.R.); (G.N.); (G.d.); (E.M.); (A.S.)
| | - Emiliano Manzo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; (N.R.); (G.N.); (G.d.); (E.M.); (A.S.)
| | - Angela Sardo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; (N.R.); (G.N.); (G.d.); (E.M.); (A.S.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (A.I.); (V.Z.); (M.C.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (A.I.); (V.Z.); (M.C.)
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (A.I.); (V.Z.); (M.C.)
| | - Antonella Iuliano
- Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (A.I.); (V.Z.); (M.C.)
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (A.I.); (V.Z.); (M.C.)
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; (N.R.); (G.N.); (G.d.); (E.M.); (A.S.)
- Correspondence: ; Tel.: +39-0818675096
| |
Collapse
|
8
|
Schieler BM, Soni MV, Brown CM, Coolen MJL, Fredricks H, Van Mooy BAS, Hirsh DJ, Bidle KD. Nitric oxide production and antioxidant function during viral infection of the coccolithophore Emiliania huxleyi. ISME JOURNAL 2019; 13:1019-1031. [PMID: 30607029 PMCID: PMC6461841 DOI: 10.1038/s41396-018-0325-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/14/2018] [Accepted: 11/04/2018] [Indexed: 12/03/2022]
Abstract
Emiliania huxleyi is a globally important marine phytoplankton that is routinely infected by viruses. Understanding the controls on the growth and demise of E. huxleyi blooms is essential for predicting the biogeochemical fate of their organic carbon and nutrients. In this study, we show that the production of nitric oxide (NO), a gaseous, membrane-permeable free radical, is a hallmark of early-stage lytic infection in E. huxleyi by Coccolithoviruses, both in culture and in natural populations in the North Atlantic. Enhanced NO production was detected both intra- and extra-cellularly in laboratory cultures, and treatment of cells with an NO scavenger significantly reduced viral production. Pre-treatment of exponentially growing E. huxleyi cultures with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prior to challenge with hydrogen peroxide (H2O2) led to greater cell survival, suggesting that NO may have a cellular antioxidant function. Indeed, cell lysates generated from cultures treated with SNAP and undergoing infection displayed enhanced ability to detoxify H2O2. Lastly, we show that fluorescent indicators of cellular ROS, NO, and death, in combination with classic DNA- and lipid-based biomarkers of infection, can function as real-time diagnostic tools to identify and contextualize viral infection in natural E. huxleyi blooms.
Collapse
Affiliation(s)
- Brittany M Schieler
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Megha V Soni
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Christopher M Brown
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Center, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Helen Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Donald J Hirsh
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
9
|
Pezzolesi L, Pichierri S, Samorì C, Totti C, Pistocchi R. PUFAs and PUAs production in three benthic diatoms from the northern Adriatic Sea. PHYTOCHEMISTRY 2017; 142:85-91. [PMID: 28697398 DOI: 10.1016/j.phytochem.2017.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
The production of polyunsaturated aldehydes (PUAs) has been reported by many planktonic diatoms, where they have been implicated in deleterious effects on copepod reproduction and growth of closeby microbes or suggested as infochemicals in shaping plankton interactions. This study investigates the production of PUAs by diatoms commonly occurring in the microphytobenthic communities in temperate regions: Tabularia affinis, Proschkinia complanatoides and Navicula sp. Results highlight the production of PUAs by the three benthic diatoms during stationary and decline phases, with intracellular concentrations from 1.8 to 154.4 fmol cell-1, which are within the range observed for planktonic species. The existence of a large family of PUAs, including some with four unsaturations, such as decatetraenal, undecatetraenal and tridecatetraenal, was observed. Since particulate and dissolved PUAs were positively correlated, together with cell lysis, equivalent concentrations may be released during late growth stages, which may affect benthic invertebrates grazing on them and other microalgae.
Collapse
Affiliation(s)
- Laura Pezzolesi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123, Ravenna, Italy.
| | - Salvatore Pichierri
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Chiara Samorì
- Dipartimento di Chimica "Giacomo Ciamician" - Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Rossella Pistocchi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123, Ravenna, Italy
| |
Collapse
|
10
|
Pichierri S, Accoroni S, Pezzolesi L, Guerrini F, Romagnoli T, Pistocchi R, Totti C. Allelopathic effects of diatom filtrates on the toxic benthic dinoflagellate Ostreopsis cf. ovata. MARINE ENVIRONMENTAL RESEARCH 2017; 131:116-122. [PMID: 28965670 DOI: 10.1016/j.marenvres.2017.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Ostreopsis blooms regularly occur in many Mediterranean coastal areas in late summer-autumn. In the northern Adriatic Sea, Ostreopsis blooms affect diatom-dominated microphytobenthic communities. In this study, the effects of the filtrates of some diatom species, both benthic (Tabularia affinis, Proschkinia complanatoides and Navicula sp.) and planktonic (Thalassiosira sp. and Skeletonema marinoi) on cell morphology, cytological features and growth of O. cf. ovata were investigated. Our results showed a marked decrease of O. cf. ovata growth when cells were exposed to all diatom filtrates tested. The highest inhibitions were observed for exposures to P. complanatoides and Navicula sp. filtrates (92.5% and 80%, respectively) and increased with the age of diatom culture. Moreover, a clear DNA degradation and abnormal forms of O. cf. ovata cells (83.8% of the total) were found at the highest concentrations using Navicula sp. filtrate after 10 days of the inoculum.
Collapse
Affiliation(s)
- Salvatore Pichierri
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Stefano Accoroni
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Pezzolesi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Franca Guerrini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Tiziana Romagnoli
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Rossella Pistocchi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
11
|
Sabharwal T, Sathasivan K, Mehdy MC. Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum. PLoS One 2017; 12:e0178761. [PMID: 28582415 PMCID: PMC5459460 DOI: 10.1371/journal.pone.0178761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/18/2017] [Indexed: 11/18/2022] Open
Abstract
Diatoms rapidly release extracellular oxylipins (oxygenated lipids) including polyunsaturated aldehydes in response to herbivory and other stresses. Oxylipins have several defense-related activities including inhibition of reproduction in herbivores and signaling to distant diatoms. Physiological changes in diatoms exposed to varying levels of oxylipins are only beginning to be understood. In this study, Phaeodactylum tricornutum cultures were treated with sublethal concentrations of the polyunsaturated aldehyde trans,trans-2,4-decadienal (DD) to assess effects on lipid composition and membrane permeability. In cells treated with DD for 3 hr, all measured saturated and unsaturated fatty acids significantly decreased (0.46–0.69 fold of levels in solvent control cells) except for 18:2 (decreased but not significantly). The decrease was greater in the polyunsaturated fatty acid pool than the saturated and monounsaturated fatty acid pool. Analysis of lipid classes revealed increased abundances of phosphatidylethanolamine and phosphatidylcholine at 3 and 6 hr. Concomitantly, these and other membrane lipids exhibited increased saturated and monounsaturated acyl chains content relative to polyunsaturated acyl chains compared to control cells. Evidence of decreased plasma membrane permeability in DD treated cells was obtained, based on reduced uptake of two of three dyes relative to control cells. Additionally, cells pre-conditioned with a sublethal DD dose for 3 hr then treated with a lethal DD dose for 2 hr exhibited greater membrane integrity than solvent pre-conditioned control cells that were similarly treated. Taken together, the data are supportive of the hypothesis that membrane remodeling induced by sublethal DD is a key element in the development of cellular resistance in diatoms to varying and potentially toxic levels of polyunsaturated aldehydes in environments impacted by herbivory or other stresses.
Collapse
Affiliation(s)
- Tanya Sabharwal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Kanagasabapathi Sathasivan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Mona C. Mehdy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Pichierri S, Pezzolesi L, Vanucci S, Totti C, Pistocchi R. Inhibitory effect of polyunsaturated aldehydes (PUAs) on the growth of the toxic benthic dinoflagellate Ostreopsis cf. ovata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:125-133. [PMID: 27606904 DOI: 10.1016/j.aquatox.2016.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/27/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Diatoms have been shown to produce and release a wide range of secondary metabolites that mediate interactions between individuals of different species. Among these compounds, different types of fatty acid derived long-chained polyunsaturated aldehydes (PUAs) have been related to multiple functions such as intra- or interspecific signals and adverse effect on the reproduction of marine organisms. Several studies have reported changes on growth, cell membrane permeability, flow cytometric properties and cell morphology in phytoplankton organisms exposed to PUAs, but little information is available on the effect of these compounds on benthic microalgae. Ostreopsis cf. ovata is a toxic benthic dinoflagellate which causes massive blooms along the Mediterranean coasts typically during the late summer period. In this study the effects of three toxic PUAs known to be produced by several algae (2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal) on the growth, cytological features and cell morphology of O. cf. ovata were investigated. Our results show a clear decrease of O. cf. ovata growth with longer-chain molecules than with shorter-chain ones, confirmed also by EC50 values calculated at 48h for 2E,4E-decadienal and 2E,4E-octadienal (6.6±1.5, 17.9±2.6μmolL(-1) respectively) and at 72h for 2E,4E-heptadienal (18.4±0.7μmolL(-1)). Moreover, morphological analysis highlighted up to 79% of abnormal forms of O. cf. ovata at the highest concentrations of 2E,4E-decadienal tested (9, 18 and 36μmolL(-1)), a gradual DNA degradation and an increase of lipid droplets with all tested PUAs. Further studies are needed to better clarify the interactions between diatoms and O. cf. ovata, especially on bloom-forming dynamics.
Collapse
Affiliation(s)
- Salvatore Pichierri
- Dipartimento di Scienze della Vita e dell'Ambiente-Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Laura Pezzolesi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Silvana Vanucci
- Dipartmento di Scienze Biologiche ed Ambientali-Università di Messina, viale Ferdinando d'Alcontres 31, 98166 S. Agata, Messina, Italy
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente-Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Rossella Pistocchi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
13
|
Gallina AA, Palumbo A, Casotti R. Oxidative pathways in response to polyunsaturated aldehydes in the marine diatom Skeletonema marinoi (Bacillariophyceae). JOURNAL OF PHYCOLOGY 2016; 52:590-598. [PMID: 27061927 DOI: 10.1111/jpy.12421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Polyunsaturated aldehydes (PUA) have recently been shown to induce reactive oxygen species (ROS) and possibly reactive nitrogen species (RNS, e.g., peroxynitrite) in the diatom Skeletonema marinoi (S. marinoi), which produces high amounts of PUA. We now are attempting to acquire better understanding of which reactive molecular species are involved in the oxidative response of S. marinoi to PUA. We used flow cytometry, the dye dihydrorhodamine 123 (DHR) as the main indicator of ROS (but which is also known to partially detect RNS), and different scavengers and inhibitors of both nitric oxide (NO) synthesis and superoxide dismutase activity (SOD). Both the scavengers Tempol (for ROS) and uric acid (UA, for peroxynitrite) induced a lower DHR-derived green fluorescence in S. marinoi cells exposed to the PUA, suggesting that both reactive species were produced. When PUA-exposed S. marinoi cells were treated with the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an opposite response was observed, with an increase in DHR-derived green fluorescence. A higher DHR-derived green fluorescence was also observed in the presence of sodium tungstate (ST), an inhibitor of NO production via nitrate reductase. In addition, two different SOD inhibitors, 2-methoxyestradiol (2ME) and sodium diethyldithiocarbamate trihydrate (DETC), had an effect, with DETC inducing the strongest inhibition after 20 min. These results indicate the involvement of O2 (•) generation and SOD activity in H2 O2 formation (with downstream ROS generation dependent from H2 O2 ) in response to PUA exposure. This is relevant as it refines the biological impact of PUA and identifies the specific molecules involved in the response. It is speculated that in PUA-exposed S. marinoi cells, beyond a certain threshold of PUA, the intracellular antioxidant system is no longer able to cope with the excess of ROS, thus resulting in the observed accumulation of both O2 (•-) and H2 O2 . This might be particularly relevant for population dynamics at sea, during blooms, when cell lysis increases and PUA are released. It can be envisioned that in the final stages of blooms, higher local PUA concentrations accumulate, which in turn induces intracellular ROS generation that ultimately leads to cell death and bloom decay.
Collapse
Affiliation(s)
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale I80121, Napoli, Italy
| | - Raffaella Casotti
- Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale I80121, Napoli, Italy
| |
Collapse
|
14
|
|
15
|
Abstract
Covering: January 2013 to online publication December 2014This review summarizes recent research in the chemical ecology of marine pelagic ecosystems, and aims to provide a comprehensive overview of advances in the field in the time period covered. In order to highlight the role of chemical cues and toxins in plankton ecology this review has been organized by ecological interaction types starting with intraspecific interactions, then interspecific interactions (including facilitation and mutualism, host-parasite, allelopathy, and predator-prey), and finally community and ecosystem-wide interactions.
Collapse
Affiliation(s)
- Emily R Schwartz
- School of Biology, Aquatic Chemical Ecology Center, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | | | |
Collapse
|
16
|
Chandrasekaran R, Barra L, Carillo S, Caruso T, Corsaro MM, Dal Piaz F, Graziani G, Corato F, Pepe D, Manfredonia A, Orefice I, Ruban AV, Brunet C. Light modulation of biomass and macromolecular composition of the diatom Skeletonema marinoi. J Biotechnol 2015; 192 Pt A:114-22. [PMID: 25456059 DOI: 10.1016/j.jbiotec.2014.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
The biochemical profile and growth of the coastal diatom Skeletonema marinoi was investigated under four different daily blue light doses (sinusoidal light peaking at 88, 130, 250 and 450 μmol photons m(−2) s(−1), respectively). Ability of cells to regulate the light energy input caused alterations in growth and different biosynthetic pathways. The light saturation index for photosynthesis (E(k)), which governs the photoacclimative processes, ranged between 250 and 300 μmol photons m(−2) s(−1). Cells that were adapted to low light (<E(k)) enhanced their carotenoid, lipid and protein contents and lowered carbohydrate content, and vice versa under high light (≥E(k)). Variations in fatty acid, pigment and amino acid compositions were a result of light adaptation. Our data show that light is a potent factor for manipulating biomass synthesis in microalgae, such as diatoms for microalgal biotechnology.
Collapse
|
17
|
Nitric oxide in marine photosynthetic organisms. Nitric Oxide 2015; 47:34-9. [PMID: 25795592 DOI: 10.1016/j.niox.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted.
Collapse
|
18
|
Li H, Pan Y, Wang Z, Chen S, Guo R, Chen J. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Adv 2015. [DOI: 10.1039/c5ra21508k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The goal of the current study was to create a combined technique for the removal of two common antibiotics (amoxicillin and cefradine) using Fenton and an algal action process.
Collapse
Affiliation(s)
- Haitao Li
- Research Institute of Nanjing Chemical Industry Group
- Nanjing
- China
| | - Yu Pan
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Zhizhi Wang
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Shan Chen
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Ruixin Guo
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Jianqiu Chen
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
19
|
Pacheco LFCDM, Uribe E, Pino J, Troncoso J, Quiróz A. The Effect of UV Light and CO<sub>2</sub> in the Production of Polyunsaturated Aldehydes in <i>Skeletonema costatum</i> (Bacillariophycea). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.524379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|