1
|
Marrero J, Amador LA, Novitskiy IM, Kutateladze AG, Rodríguez AD. Kallopterolides A-I, a New Subclass of seco-Diterpenes Isolated from the Southwestern Caribbean Sea Plume Antillogorgia kallos. Molecules 2024; 29:2493. [PMID: 38893370 PMCID: PMC11173908 DOI: 10.3390/molecules29112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Kallopterolides A-I (1-9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1-9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents.
Collapse
Affiliation(s)
- Jeffrey Marrero
- Department of Chemistry, University of Puerto Rico, 17 Ave. Universidad STE 1701, San Juan, PR 00931, USA; (J.M.); (L.A.A.)
| | - Luis A. Amador
- Department of Chemistry, University of Puerto Rico, 17 Ave. Universidad STE 1701, San Juan, PR 00931, USA; (J.M.); (L.A.A.)
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA
| | - Ivan M. Novitskiy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (I.M.N.); (A.G.K.)
| | - Andrei G. Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (I.M.N.); (A.G.K.)
| | - Abimael D. Rodríguez
- Department of Chemistry, University of Puerto Rico, 17 Ave. Universidad STE 1701, San Juan, PR 00931, USA; (J.M.); (L.A.A.)
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA
| |
Collapse
|
2
|
Sahoo A, Fuloria S, Swain SS, Panda SK, Sekar M, Subramaniyan V, Panda M, Jena AK, Sathasivam KV, Fuloria NK. Potential of Marine Terpenoids against SARS-CoV-2: An In Silico Drug Development Approach. Biomedicines 2021; 9:biomedicines9111505. [PMID: 34829734 PMCID: PMC8614725 DOI: 10.3390/biomedicines9111505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
In an emergency, drug repurposing is the best alternative option against newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, several bioactive natural products have shown potential against SARS-CoV-2 in recent studies. The present study selected sixty-eight broad-spectrum antiviral marine terpenoids and performed molecular docking against two novel SARS-CoV-2 enzymes (main protease or Mpro or 3CLpro) and RNA-dependent RNA polymerase (RdRp). In addition, the present study analysed the physiochemical-toxicity-pharmacokinetic profile, structural activity relationship, and phylogenetic tree with various computational tools to select the 'lead' candidate. The genomic diversity study with multiple sequence analyses and phylogenetic tree confirmed that the newly emerged SARS-CoV-2 strain was up to 96% structurally similar to existing CoV-strains. Furthermore, the anti-SARS-CoV-2 potency based on a protein-ligand docking score (kcal/mol) exposed that the marine terpenoid brevione F (-8.4) and stachyflin (-8.4) exhibited similar activity with the reference antiviral drugs lopinavir (-8.4) and darunavir (-7.5) against the target SARS-CoV-Mpro. Similarly, marine terpenoids such as xiamycin (-9.3), thyrsiferol (-9.2), liouvilloside B (-8.9), liouvilloside A (-8.8), and stachyflin (-8.7) exhibited comparatively higher docking scores than the referral drug remdesivir (-7.4), and favipiravir (-5.7) against the target SARS-CoV-2-RdRp. The above in silico investigations concluded that stachyflin is the most 'lead' candidate with the most potential against SARS-CoV-2. Previously, stachyflin also exhibited potential activity against HSV-1 and CoV-A59 within IC50, 0.16-0.82 µM. Therefore, some additional pharmacological studies are needed to develop 'stachyflin' as a drug against SARS-CoV-2.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (S.F.); (N.K.F.)
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR–Regional Medical Research Centre, Bhubaneswar 751023, Odisha, India;
| | - Sujogya K. Panda
- Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Ajaya K. Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Kathiresan V. Sathasivam
- Faculty of Applied Science, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (S.F.); (N.K.F.)
| |
Collapse
|
3
|
Syahputra G, Gustini N, Bustanussalam B, Hapsari Y, Sari M, Ardiansyah A, Bayu A, Putra MY. Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e68432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the uncontrolled spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), development and distribution of antiviral drugs and vaccines have gained tremendous importance. This study focused on two viral proteases namely main protease (Mpro) and papain-like protease (PLpro) and human angiotensin-converting enzyme (ACE-2) to identify which of these are essential for viral replication. We screened 102 secondary metabolites against SARS-CoV-2 isolated from 36 terrestrial plants and 36 marine organisms from Indonesian biodiversity. These organisms are typically presumed to have antiviral effects, and some of them have been used as an immunomodulatory activity in traditional medicine. For the molecular docking procedure to obtain Gibbs free energy value (∆G), toxicity, ADME and Lipinski, AutoDock Vina was used. In this study, five secondary metabolites, namely corilagin, dieckol, phlorofucofuroeckol A, proanthocyanidins, and isovitexin, were found to inhibit ACE-2, Mpro, and PLpro receptors in SARS-CoV-2, with a high affinity to the same sites of ptilidepsin, remdesivir, and chloroquine as the control molecules. This study was delimited to molecular docking without any validation by simulations concerned with molecular dynamics. The interactions with two viral proteases and human ACE-2 may play a key role in developing antiviral drugs for five active compounds. In future, we intend to investigate antiviral drugs and the mechanisms of action by in vitro study.
Collapse
|
4
|
Riccio G, Ruocco N, Mutalipassi M, Costantini M, Zupo V, Coppola D, de Pascale D, Lauritano C. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules 2020; 10:biom10071007. [PMID: 32645994 PMCID: PMC7407529 DOI: 10.3390/biom10071007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.
Collapse
Affiliation(s)
- Gennaro Riccio
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Nadia Ruocco
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Mirko Mutalipassi
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Maria Costantini
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Valerio Zupo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Daniela Coppola
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Donatella de Pascale
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Correspondence: ; Tel.: +39-081-5833-221
| |
Collapse
|
5
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
6
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
7
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
8
|
Tseng WR, Ahmed AF, Huang CY, Tsai YY, Tai CJ, Orfali RS, Hwang TL, Wang YH, Dai CF, Sheu JH. Bioactive Capnosanes and Cembranes from the Soft Coral Klyxum flaccidum. Mar Drugs 2019; 17:md17080461. [PMID: 31394844 PMCID: PMC6722650 DOI: 10.3390/md17080461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Two new capnosane-based diterpenoids, flaccidenol A (1) and 7-epi-pavidolide D (2), two new cembranoids, flaccidodioxide (3) and flaccidodiol (4), and three known compounds 5 to 7 were characterized from the marine soft coral Klyxum flaccidum, collected off the coast of the island of Pratas. The structures of the new compounds were determined by extensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and spectroscopic data comparison with related structures. The rare capnosane diterpenoids were isolated herein from the genus Klyxum for the first time. The cytotoxicity of compounds 1 to 7 against the proliferation of a limited panel of cancer cell lines was assayed. The isolated diterpenoids also exhibited anti-inflammatory activity through suppression of superoxide anion generation and elastase release in the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-stimulated human neutrophils. Furthermore, 1 and 7 also exhibited cytotoxicity toward the tested cancer cells, and 7 could effectively inhibit elastase release. It is worth noting that the biological activities of 7 are reported for the first time in this paper.
Collapse
Affiliation(s)
- Wan-Ru Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Ying Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chi-Jen Tai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Raha S Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chang-Feng Dai
- Institute of Oceanography, National Taiwan University, Taipei 112, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
9
|
Roy PK, Roy S, Ueda K. New cytotoxic cembranolides from an Okinawan soft coral, Lobophytum sp. Fitoterapia 2019; 136:104162. [PMID: 31075489 DOI: 10.1016/j.fitote.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Three new cembranolides (1-3) were isolated from an Okinawan soft coral, Lobophytum sp., together with the known cembranolide diterpenoids (4-9). Their structures were determined by extensive analysis of spectroscopic data (1D and 2D NMR, IR, and MS), molecular modeling, and comparison with data reported elsewhere. All compounds contain an α-methylene-γ-lactone ring adjacent to a cembrane, and some of them (1, 6-8) have an epoxide ring as well. The new metabolites were evaluated for cytotoxicity against HeLa, A459, B16-F10, and RAW 264.7 cells and anti-inflammatory effect in LPS-stimulated inflammatory RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Prodip K Roy
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-2013, Japan.
| | - Sona Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Katsuhiro Ueda
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-2013, Japan.
| |
Collapse
|
10
|
A Brief Review on New Naturally Occurring Cembranoid Diterpene Derivatives from the Soft Corals of the Genera Sarcophyton, Sinularia, and Lobophytum Since 2016. Molecules 2019; 24:molecules24040781. [PMID: 30795596 PMCID: PMC6412313 DOI: 10.3390/molecules24040781] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
This work reviews the new isolated cembranoid derivatives from species of the genera Sarcophyton, Sinularia, and Lobophytum as well as their biological properties, during 2016–2018. The compilation permitted to conclude that much more new cembranoid diterpenes were found in the soft corals of the genus Sarcophyton than in those belonging to the genera Lobophytum or Sinularia. Beyond the chemical composition, the biological properties were also reviewed, namely anti-microbial against several Gram-positive and Gram-negative bacteria and fungi, anti-inflammatory and anti-tumoral against several types of cancer cells. In spite of the biological activities detected in almost all samples, there is a remarkable diversity in the results which may be attributed to the chemical variability that needs to be deepened in order to develop new molecules with potential application in medicine.
Collapse
|
11
|
Rahelivao MP, Lübken T, Gruner M, Kataeva O, Ralambondrahety R, Andriamanantoanina H, Checinski MP, Bauer I, Knölker HJ. Isolation and structure elucidation of natural products of three soft corals and a sponge from the coast of Madagascar. Org Biomol Chem 2018; 15:2593-2608. [PMID: 28267183 DOI: 10.1039/c7ob00191f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the three soft corals Sarcophyton stellatum, Capnella fungiformis and Lobophytum crassum and the sponge Pseudoceratina arabica, which have been collected at the coast of Madagascar. In addition to previously known marine natural products, S. stellatum provided the new (+)-enantiomer of the cembranoid (1E,3E,11E)-7,8-epoxycembra-1,3,11,15-tetraene (2). Capnella fungiformis afforded three new natural products, ethyl 5-[(1E,5Z)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (6), ethyl 5-[(1E,5E)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (7) and the diepoxyguaiane sesquiterpene oxyfungiformin (9a). The extracts of all three soft corals exhibited moderate activities against the malarial parasite Plasmodium falciparum. Extracts of the sponge Pseudoceratina arabica proved to be very active against a series of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Tilo Lübken
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| | - Margit Gruner
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| | - Olga Kataeva
- A. M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | | | | | | | - Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| |
Collapse
|
12
|
Anti-Inflammatory Dembranoids from the Soft Coral Lobophytum crassum. Mar Drugs 2017; 15:md15100327. [PMID: 29065512 PMCID: PMC5666433 DOI: 10.3390/md15100327] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/17/2022] Open
Abstract
Cembrane-type diterpenoids are among the most frequently encountered natural products from the soft corals of the genus Lobophytum. In the course of our investigation to identify anti-inflammatory constituents from a wild-type soft coral Lobophytum crassum, two new cembranoids, lobophyolide A (1) and B (2), along with five known compounds (3–7), were isolated. The structures of these natural products were identified using NMR and MS spectroscopic analyses. Compound 1 was found to possess the first identified α-epoxylactone group among all cembrane-type diterpenoids. The in vitro anti-inflammatory effect of compounds 1–5 was evaluated. The results showed that compounds 1–5 not only reduced IL-12 release, but also attenuated NO production in LPS-activated dendritic cells. Our data indicated that the isolated series of cembrane-type diterpenoids demonstrated interesting structural features and anti-inflammatory activity which could be further developed into therapeutic entities.
Collapse
|
13
|
Liang LF, Chen WT, Mollo E, Yao LG, Wang HY, Xiao W, Guo YW. Sarcophytrols G - L, Novel Minor Metabolic Components from South China Sea Soft Coral Sarcophyton trocheliophorum Marenzeller. Chem Biodivers 2017; 14. [PMID: 28323380 DOI: 10.1002/cbdv.201700079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/17/2017] [Indexed: 12/31/2022]
Abstract
Minor metabolic components, six new cembranoids sarcophytrols G - L (1 - 6) along with two known related analogues 7 and 8, were isolated from the South China Sea soft coral Sarcophyton trocheliophorum. Their structures were elucidated by extensive spectroscopic analyses (1D-, 2D-NMR, and ESI-MS) as well as comparison with literature data. As part of our ongoing research project for discovering bioactive substances from Chinese marine invertebrates, compounds 1 - 8 were tested for their inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a key target for the treatment of Type-II diabetes and obesity. However, none of them exhibited potent PTP1B inhibitory activities.
Collapse
Affiliation(s)
- Lin-Fu Liang
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech park, Shanghai, 201203, P. R. China
| | - Wen-Ting Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech park, Shanghai, 201203, P. R. China
| | - Ernesto Mollo
- Institute of Biomolecular Chemistry (ICB)-CNR, Via Campi Flegrei, 34, IT-80078, Pozzuoli, Naples
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech park, Shanghai, 201203, P. R. China
| | - He-Yao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech park, Shanghai, 201203, P. R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, P. R. China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech park, Shanghai, 201203, P. R. China
| |
Collapse
|
14
|
Aboutabl EA, Selim NM, Azzam SM, Michel CG, Hegazy MF, Ali AM, Hussein AA. Polyhydroxy Sterols Isolated from the Red Sea Soft Coral Lobophytum crassum and their Cytotoxic Activity. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One new (1) together with four known sterols (2 - 5) and a sesquiterpene (6) were isolated from a polar extract of the Red Sea soft coral Lobophytum crassum. The compounds were identified as 24-methylenecholest-5-ene-1α,3 1α,11α-triol 1-acetate (1), 24-methylenecholest-5-ene-1α,3β,11α-triol (2), 24-methylenecholest-5-ene-3β-ol (3), 24-methylenecholestane-1α,3β,5a,6P,1-pentol (4), 24-methylenecholestane-3β,5α,6β-triol (5) and alismoxide (6) based on extensive NMR analysis. The cytotoxicity of compounds 1 - 6 was evaluated in vitro using three human cancer cell lines viz., HepG2, Hep-2 and HCT-116. Compound 1 showed selective cytotoxic activity against HepG2, while 3 exhibited cytotoxicity against all tested cell lines.
Collapse
Affiliation(s)
- Elsayed A. Aboutabl
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Einy st. Cairo, 11432, Egypt
| | - Nabil M. Selim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Einy st. Cairo, 11432, Egypt
| | - Shadia M Azzam
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Einy st. Cairo, 11432, Egypt
| | - Camilia G. Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Einy st. Cairo, 11432, Egypt
| | - Mohamed F. Hegazy
- Phytochemistry department, National Research Center, El-behooth st. Giza, Egypt
| | - Abdelhamid M. Ali
- National Institute of Oceanography and Fisheries, Attaka P.O. Box, 182, Suez, Egypt
| | - Ahmed A. Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Bellville Campus, PO Box 1906, Bellville 7535, South Africa
| |
Collapse
|
15
|
Zhao M, Cheng S, Yuan W, Xi Y, Li X, Dong J, Huang K, Gustafson KR, Yan P. Cembranoids from a Chinese Collection of the Soft Coral Lobophytum crassum. Mar Drugs 2016; 14:md14060111. [PMID: 27271640 PMCID: PMC4926070 DOI: 10.3390/md14060111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022] Open
Abstract
Ten new cembrane-based diterpenes, locrassumins A–G (1–7), (–)-laevigatol B (8), (–)-isosarcophine (9), and (–)-7R,8S-dihydroxydeepoxysarcophytoxide (10), were isolated from a South China Sea collection of the soft coral Lobophytum crassum, together with eight known analogues (11–18). The structures of the new compounds were determined by extensive spectroscopic analysis and by comparison with previously reported data. Locrassumin C (3) possesses an unprecedented tetradecahydrobenzo[3,4]cyclobuta[1,2][8]annulene ring system. Compounds 1, 7, 12, 13, and 17 exhibited moderate inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production with IC50 values of 8–24 μM.
Collapse
Affiliation(s)
- Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Shimiao Cheng
- The Fifth Affiliated Hospital, Wenzhou Medical University, Lishui 323000, China.
| | - Weiping Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yiyuan Xi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiubao Li
- Key Laboratory of Marine Bio-Resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Jianyong Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kexin Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kirk R Gustafson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Pengcheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
16
|
Roy PK, Ashimine R, Miyazato H, Taira J, Ueda K. New Casbane and Cembrane Diterpenoids from an Okinawan Soft Coral, Lobophytum sp. Molecules 2016; 21:molecules21050679. [PMID: 27223275 PMCID: PMC6273427 DOI: 10.3390/molecules21050679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022] Open
Abstract
A new rare casbane-type diterpenoid 1 and two new cembrane diterpenoids 2, 3 were isolated from an Okinawan soft coral, Lobophytum sp., together with four known cembrane diterpenoids 4–7. Their structures were elucidated by extensive analysis of spectroscopic data (1D and 2D NMR, IR, and MS) and a molecular modeling study. The new isolates showed weak anti-bacterial activity, mild cytotoxicity against HCT116 cells, and anti-inflammatory effect in LPS/IFN-γ-stimulated RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Prodip K Roy
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-2013, Japan.
| | - Runa Ashimine
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-2013, Japan.
| | - Haruna Miyazato
- Department of Bioresources Engineering, Okinawa National College of Technology, 905 Henoko, Nago-shi, Okinawa 905-2192, Japan.
| | - Junsei Taira
- Department of Bioresources Engineering, Okinawa National College of Technology, 905 Henoko, Nago-shi, Okinawa 905-2192, Japan.
| | - Katsuhiro Ueda
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-2013, Japan.
| |
Collapse
|
17
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|