1
|
Bispat AS, Cardoso FC, Hasan MM, Dongol Y, Wilcox R, Lewis RJ, Duggan PJ, Tuck KL. Inhibition of N-type calcium channels by phenoxyaniline and sulfonamide analogues. RSC Med Chem 2024; 15:916-936. [PMID: 38516585 PMCID: PMC10953480 DOI: 10.1039/d3md00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Building on previous investigations, structural modifications to the neuronal calcium ion channel blocker MONIRO-1 and related compounds were conducted that included replacement of the amide linker with an aniline and isosteric sulfonamide moiety, and the previously used strategy of substitution of the guanidinium group with less hydrophilic amine functionalities. A comprehensive SAR study revealed a number of phenoxyaniline and sulfonamide compounds that were more potent or had similar potency for the CaV2.2 and CaV3.2 channel compared to MONIRO-1 when evaluated in a FLIPR-based intracellular calcium response assay. Cytotoxicity investigations indicated that the sulfonamide analogues were well tolerated by Cos-7 cells at dosages required to inhibit both calcium ion channels. The sulfonamide derivatives were the most promising CaV2.2 inhibitors developed by us to date due, possessing high stability in plasma, low toxicity (estimated therapeutic index > 10), favourable CNS MPO scores (4.0-4.4) and high potency and selectivity, thereby, making this class of compounds suitable candidates for future in vivo studies.
Collapse
Affiliation(s)
- Anjie S Bispat
- School of Chemistry, Monash University Victoria 3800 Australia
- CSIRO Manufacturing, Research Way Clayton Victoria 3168 Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Md Mahadhi Hasan
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Yashad Dongol
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Ricki Wilcox
- School of Chemistry, Monash University Victoria 3800 Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Peter J Duggan
- CSIRO Manufacturing, Research Way Clayton Victoria 3168 Australia
- College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Victoria 3800 Australia
| |
Collapse
|
2
|
Antunes FTT, Campos MM, Carvalho VDPR, da Silva Junior CA, Magno LAV, de Souza AH, Gomez MV. Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 2023; 24:ijms24119223. [PMID: 37298174 DOI: 10.3390/ijms24119223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they are investigated to find new strategies for better pain control. This review provides an overview of naturally based and synthetic VGCC blockers, highlighting new evidence on the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maria Martha Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | | | | | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | - Alessandra Hubner de Souza
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | | |
Collapse
|
3
|
Sameera, Shah FA, Rashid S. Conformational ensembles of non-peptide ω-conotoxin mimetics and Ca +2 ion binding to human voltage-gated N-type calcium channel Ca v2.2. Comput Struct Biotechnol J 2020; 18:2357-2372. [PMID: 32994894 PMCID: PMC7498737 DOI: 10.1016/j.csbj.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic neuropathic pain is the most complex and challenging clinical problem of a population that sets a major physical and economic burden at the global level. Ca2+-permeable channels functionally orchestrate the processing of pain signals. Among them, N-type voltage-gated calcium channels (VGCC) hold prominent contribution in the pain signal transduction and serve as prime targets for synaptic transmission block and attenuation of neuropathic pain. Here, we present detailed in silico analysis to comprehend the underlying conformational changes upon Ca2+ ion passage through Cav2.2 to differentially correlate subtle transitions induced via binding of a conopeptide-mimetic alkylphenyl ether-based analogue MVIIA. Interestingly, pronounced conformational changes were witnessed at the proximal carboxyl-terminus of Cav2.2 that attained an upright orientation upon Ca+2 ion permeability. Moreover, remarkable changes were observed in the architecture of channel tunnel. These findings illustrate that inhibitor binding to Cav2.2 may induce more narrowing in the pore size as compared to Ca2+ binding through modulating the hydrophilicity pattern at the selectivity region. A significant reduction in the tunnel volume at the selectivity filter and its enhancement at the activation gate of Ca+2-bound Cav2.2 suggests that ion binding modulates the outward splaying of pore-lining S6 helices to open the voltage gate. Overall, current study delineates dynamic conformational ensembles in terms of Ca+2 ion and MVIIA-associated structural implications in the Cav2.2 that may help in better therapeutic intervention to chronic and neuropathic pain management.
Collapse
Affiliation(s)
- Sameera
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
4
|
Cardoso FC, Marliac MA, Geoffroy C, Schmit M, Bispat A, Lewis RJ, Tuck KL, Duggan PJ. The neuronal calcium ion channel activity of constrained analogues of MONIRO-1. Bioorg Med Chem 2020; 28:115655. [DOI: 10.1016/j.bmc.2020.115655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/19/2023]
|
5
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
6
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
7
|
High-Throughput Fluorescence Assays for Ion Channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:27-72. [DOI: 10.1007/978-3-030-12457-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Sairaman A, Cardoso FC, Bispat A, Lewis RJ, Duggan PJ, Tuck KL. Synthesis and evaluation of aminobenzothiazoles as blockers of N- and T-type calcium channels. Bioorg Med Chem 2018; 26:3046-3059. [DOI: 10.1016/j.bmc.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
|
9
|
Heusinkveld HJ, Westerink RH. Comparison of different in vitro cell models for the assessment of pesticide-induced dopaminergic neurotoxicity. Toxicol In Vitro 2017; 45:81-88. [DOI: 10.1016/j.tiv.2017.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 01/10/2023]
|
10
|
McArthur JR, Motin L, Gleeson EC, Spiller S, Lewis RJ, Duggan PJ, Tuck KL, Adams DJ. Inhibition of human N- and T-type calcium channels by an ortho-phenoxyanilide derivative, MONIRO-1. Br J Pharmacol 2017; 175:2284-2295. [PMID: 28608537 DOI: 10.1111/bph.13910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/24/2017] [Accepted: 06/05/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Voltage-gated calcium channels are involved in nociception in the CNS and in the periphery. N-type (Cav 2.2) and T-type (Cav 3.1, Cav 3.2 and Cav 3.3) voltage-gated calcium channels are particularly important in studying and treating pain and epilepsy. EXPERIMENTAL APPROACH In this study, whole-cell patch clamp electrophysiology was used to assess the potency and mechanism of action of a novel ortho-phenoxylanilide derivative, MONIRO-1, against a panel of voltage-gated calcium channels including Cav 1.2, Cav 1.3, Cav 2.1, Cav 2.2, Cav 2.3, Cav 3.1, Cav 3.2 and Cav 3.3. KEY RESULTS MONIRO-1 was 5- to 20-fold more potent at inhibiting human T-type calcium channels, hCav 3.1, hCav 3.2 and hCav 3.3 (IC50 : 3.3 ± 0.3, 1.7 ± 0.1 and 7.2 ± 0.3 μM, respectively) than N-type calcium channel, hCav 2.2 (IC50 : 34.0 ± 3.6 μM). It interacted with L-type calcium channels Cav 1.2 and Cav 1.3 with significantly lower potency (IC50 > 100 μM) and did not inhibit hCav 2.1 or hCav 2.3 channels at concentrations as high as 100 μM. State- and use-dependent inhibition of hCav 2.2 channels was observed, whereas stronger inhibition occurred at high stimulation frequencies for hCav 3.1 channels suggesting a different mode of action between these two channels. CONCLUSIONS AND IMPLICATIONS Selectivity, potency, reversibility and multi-modal effects distinguish MONIRO-1 from other low MW inhibitors acting on Cav channels involved in pain and/or epilepsy pathways. High-frequency firing increased the affinity for MONIRO-1 for both hCav 2.2 and hCav 3.1 channels. Such Cav channel modulators have potential clinical use in the treatment of epilepsies, neuropathic pain and other nociceptive pathophysiologies. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Health Innovations Research Institute, RMIT University, Melbourne, VIC, Australia
| | - Leonid Motin
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Health Innovations Research Institute, RMIT University, Melbourne, VIC, Australia
| | - Ellen C Gleeson
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, Australia.,School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Sandro Spiller
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Peter J Duggan
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, Australia.,School of Chemical and Physical Sciences, Flinders University, Adelaide, SA, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Health Innovations Research Institute, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Bioactive Mimetics of Conotoxins and other Venom Peptides. Toxins (Basel) 2015; 7:4175-98. [PMID: 26501323 PMCID: PMC4626728 DOI: 10.3390/toxins7104175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/08/2015] [Indexed: 11/17/2022] Open
Abstract
Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.
Collapse
|