1
|
Xu X, Huang X, Xu W. Marine actinomycetes-derived angucyclines and angucyclinones with biosynthesis and activity--past 10 years (2014-2023). Eur J Med Chem 2025; 283:117161. [PMID: 39700875 DOI: 10.1016/j.ejmech.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Actinomycete bacteria derived from marine environments are a good source of natural products with diverse biological activities such as cytotoxicity, antiviral, and antimicrobial actions. This review summarizes 191 angucyclines and angucyclinones derived from marine actinomycetes reported in the literature from 2014 to 2023 and introduced the latest developments in actinomycete-silenced biosynthetic gene cluster activation, including heterologous recombination and in situ activation. The key role of redox post-modifications in the biosynthetic process of atypical angucyclines. This review provides insights into the discovery and biosynthesis of valuable angucyclines and angucyclinones from marine-associated actinomycetes and potential lead compounds for the research and development of new drugs.
Collapse
Affiliation(s)
- Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Wenhua Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
2
|
Hu D, Zhang T, He S, Pu T, Yin Y, Hu Y. Mining metagenomic data to gain a new insight into the gut microbial biosynthetic potential in placental mammals. Microbiol Spectr 2024; 12:e0086424. [PMID: 39162518 PMCID: PMC11448209 DOI: 10.1128/spectrum.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024] Open
Abstract
Mammals host a remarkable diversity and abundance of gut microbes. Biosynthetic gene clusters (BGCs) in microbial genomes encode biologically active chemical products and play an important role in microbe-host interactions. Traditionally, the exploration of gut microbial metabolic functions has relied on the pure culture method. However, given the limited amounts of microbes being cultivated, insights into the metabolism of gut microbes in mammals continued to be very limited. In this study, we adopted a computational pipeline for mining the metagenomic data (named taxonomy-guided identification of biosynthetic gene clusters, TaxiBGC) to identify experimentally verified BGCs in 373 metagenomes across 53 mammalian species in an unbiased manner. We demonstrated that polyketides (PKs) and nonribosomal peptides (NRPs) are representative of mammals, and the products derived from them were associated with cell-cell communication and resistance to inflammation. Large carnivores had the highest number of BGCs, followed by large herbivores and small mammals. We also observed that the large mammals had more common BGCs that aid in the biosynthesis of a variety of natural products. However, small mammals not only had fewer BGCs but were also unique to each species. Our results provide novel insights into the mining of metagenomic data sets to identify active BGCs and their products across mammals.IMPORTANCEThe gut microbes host numerous biosynthetic gene clusters (BGCs) that biosynthesize natural products and impact the host's physiology. Historically, our understanding of BGCs in mammalian gut microbes was largely based on studies on cultured isolates; however, only a small fraction of mammal-associated microbes have been investigated. The biochemical diversity of the mammalian gut microbiota is poorly understood. Metagenomic sequencing contains data from a vast number of organisms and provides information on the total gene content of communities. Unfortunately, the existing BGC prediction tools are designed for individual microbial genomes. Recently, a BGC prediction tool called the taxonomy-guided identification of biosynthetic gene clusters (TaxiBGC) that directly mine the metagenome was developed. To gain new insights into the microbial metabolism, we used TaxiBGC to predict BGCs from 373 metagenomes across 53 mammalian species representing seven orders. Our findings elucidate the functional activities of complex microbial communities in the gut.
Collapse
Affiliation(s)
- Dini Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Shunfu He
- Xining Wildlife Zoo, Xining, Qinghai, China
| | | | | | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
4
|
Zhang H, Ren X, Xu H, Qi H, Du S, Huang J, Zhang J, Wang J. Phenopyrrolizins A and B, Two Novel Pyrrolizine Alkaloids from Marine-Derived Actinomycetes Micromonospora sp. HU138. Molecules 2023; 28:7672. [PMID: 38005394 PMCID: PMC10675482 DOI: 10.3390/molecules28227672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Two previously undescribed pyrrolizine alkaloids, named phenopyrrolizins A and B (1 and 2), were obtained from the fermentation broth of marine-derived Micromonospora sp. HU138. Their structures were established by extensive spectroscopic analysis, including 1D and 2D NMR spectra as well as HRESIMS data. The structure of 1 was confirmed by single-crystal diffraction analysis and its racemization mechanism was proposed. The antifungal activity assay showed that 2 could inhibit the mycelial growth of Botrytis cinerea with the inhibitory rates of 18.9% and 35.9% at 20 μg/disc and 40 μg/disc, respectively.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
- Key Laboratory of Horticultural Biotechnology of Taizhou, School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou 318020, China;
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Xiaohan Ren
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
| | - Haiju Xu
- Key Laboratory of Horticultural Biotechnology of Taizhou, School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou 318020, China;
| | - Huan Qi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
| | - Shihua Du
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Jun Huang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
- Zhejiang Makohs Biotech Co., Ltd., Taizhou 318000, China
| | - Ji Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Jidong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; (H.Z.); (X.R.); (H.Q.); (J.H.)
| |
Collapse
|
5
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
6
|
Xue JY, Wu YY, Han YL, Song XY, Zhang MY, Cheng J, Lin B, Xia MY, Zhang YX. Anthraquinone metabolites isolated from the rhizosphere soil Streptomyces of Panax notoginseng (Burk.) F. H. Chen target MMP2 to inhibit cancer cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116457. [PMID: 37088235 DOI: 10.1016/j.jep.2023.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen belongs to the Araliaceae family. It has been used by traditional Chinese people in Northeast Asia for centuries as an antidiabetic, antioxidant, antitumor agent, etc. Endophytic or rhizospheric microorganisms play key roles in plant defense mechanisms, and they are essential in the discovery of pharmaceuticals and valuable new secondary metabolites. In particular, endophytic or rhizospheric microorganisms of traditional medicinal plants. AIM OF THE STUDY To discover valuable new secondary metabolites from rhizosphere soil Streptomyces sp. SYP-A7185 of P. notoginseng, and to explore potential bioactivities and targets of metabolites protrusive function. MATERIALS AND METHODS The metabolites were obtained via column chromatography and identified by multiple spectroscopic analyses. The antitumor, antioxidant, antibacterial, and antiglycosidases effects of isolated metabolites were tested using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetazolium bromide (MTT), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 96-well turbidimetric, and α-glucosidase inhibitory assays. The potential antitumor targets were predicted through network pharmacological approaches. The interactions between metabolites and target were verified by molecular docking and biolayer interferometry (BLI) assay. The effects of cancer cells migration were detected through wound healing assays in A549 and MCF-7. Other cellular validation experiments including reverse transcription-quantitative PCR (RT‒qPCR) and western blotting (WB) were used to confirm the hypothesis of network pharmacology. RESULTS Five different chemotypes of anthraquinone derivatives (1-10), including six new compounds (3, 6-10), were identified from Streptomyces sp. SYP-A7185. Compounds 1-6 and 9 displayed moderate to strong cytotoxicity on five human cancer cell lines (A549, HepG2, MCF-7, MDA-MD-231, and MGC-803). Moreover, matrix metalloproteinase-2 (MMP2) were predicted as a potential antitumor target of metabolites 1-6 and 9 by comprehensive network pharmacology analysis. Later, BLI assays revealed strong intermolecular interactions between MMP2 and antitumor metabolites, and molecular docking results showed the interaction of metabolites 1-6 and 9 with MMP2 was dependent on the crucial amino acid residues of LEU-83, ALA-84, LEU-117, HIS-131, PRO-135, GLY-136, ALA-140, PRO-141, TYR-143, and THR-144. These results implied that metabolites (1-6 and 9) might inhibit cancer cell migration besides cancer cell proliferation. After that, the cell wound healing assay showed that the cell migration processes were also inhibited after the treatments of compounds 1 and 3 in A549 and MCF-7 cells. In addition, the RT‒qPCR and WB results demonstrated that the gene expression levels of MMP2 were decreased after the treatment with compounds 1 and 3 in A549 and MCF-7 cells. Besides, compound 2 displayed moderate antioxidant activity (EC50, 27.43 μM), compounds 3 and 6 exhibited moderate antibacterial activity, and compound 3 inhibited α-glucosidase with an IC50 value of 13.10 μM. CONCLUSIONS Anthraquinone metabolites, from rhizosphere soil Streptomyces sp. of P. notoginseng, possess antitumor, antioxidant, antibacterial, and antiglycosidase activities. Moreover, metabolites 1 and 3 inhibit cancer cells migration through downregulating MMP2.
Collapse
Affiliation(s)
- Jin-Yan Xue
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu-Ling Han
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin-Yu Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ming-Yu Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
|
8
|
Qiu P, Xia J, Zhang H, Lin D, Shao Z. A Review of Diterpenes from Marine-Derived Fungi: 2009-2021. Molecules 2022; 27:molecules27238303. [PMID: 36500394 PMCID: PMC9741372 DOI: 10.3390/molecules27238303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Marine-derived fungi are important sources of novel compounds and pharmacologically active metabolites. As an important class of natural products, diterpenes show various biological activities, such as antiviral, antibacterial, anti-inflammatory, antimalarial, and cytotoxic activities. Developments of equipment for the deep-sea sample collection allow discoveries of more marine-derived fungi with increasing diversity, and much progress has been made in the identification of diterpenes with novel structures and bioactivities from marine fungi in the past decade. The present review article summarized the chemical structures, producing organisms and biological activities of 237 diterpenes which were isolated from various marine-derived fungi over the period from 2009 to 2021. This review is beneficial for the exploration of marine-derived fungi as promising sources of bioactive diterpenes.
Collapse
Affiliation(s)
- Peng Qiu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haitao Zhang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| |
Collapse
|
9
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Cera G, Risdian C, Pira H, Wink J. Antimicrobial potential of culturable actinobacteria isolated from the Pacific oyster
Crassostrea gigas
(Bivalvia, Ostreidae). J Appl Microbiol 2022; 133:1099-1114. [DOI: 10.1111/jam.15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Guillermo Cera
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
- Marine Biology Program, Faculty of Natural Sciences and Engineering, Universidad Jorge Tadeo Lozano Santa Marta Colombia
| | - Chandra Risdian
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
- Research Unit for Clean Technology, National Research and Innovation Agency (BRIN), 40135 Bandung Indonesia
| | - Hani Pira
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
| | - Joachim Wink
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig Germany
| |
Collapse
|
11
|
Lu S, Hu J, Xie X, Huang R, He J. Sesquiterpenoids isolated from feces-residing Streptomyces sp. inhibit the cellular entry of influenza a viruses. Nat Prod Res 2022; 36:6286-6296. [PMID: 35105217 DOI: 10.1080/14786419.2022.2033740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Five metabolites (1-5), including two new sesquiterpenoids, designated ganodermanol L (1) and 4α,15-epoxyeudesmane-1β,6α,11-triol (2), together with three known structurally related compounds (3-5), have been isolated from the cultures of Streptomyces sp. XM17, a bacteria residing in the fresh feces of the giant panda Ailuropoda melanoleuca. The structures of 1-2 were established on the basis of extensive spectroscopic analyses, including 1D- and 2D-NMR (1H-1H COSY, HMQC, HMBC and NOESY) experiments. Furthermore, the absolute configuration of 1 was established by single-crystal X-ray crystallographic analyses. Of noted, these compounds were found to possessed antiviral activities using the 'pretreatment of virus' approach with IC50 values ranging from 4 to 30 nM, indicating that these sesquiterpenoids were potent in inhibiting the entry of influenza A virus.
Collapse
Affiliation(s)
- Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jianan Hu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xi Xie
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Ruifeng Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, Wang C, Cao S. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. ACTA MATERIA MEDICA 2022; 1:445-475. [PMID: 36588746 PMCID: PMC9802659 DOI: 10.15212/amm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. The strains of actinomycetes were isolated from different sources like fishes, coral, sponges, seaweeds, mangroves, sediments etc. These cytotoxic compounds can be categorized briefly into four classes: polyketides, non-ribosomal peptides and hybrids, isoprenoids and hybrids, and others, among which majority are polyketides (146). Twenty two out of the 254 compounds showed potent cytotoxicity with IC50 values at ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes, which were new when they were reported from 1989 to 2020.
Collapse
Affiliation(s)
- Ziyan Qiu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yinshuang Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kunyan Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shiyi Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Huilin Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China,Correspondence: (C.W.); (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA,Correspondence: (C.W.); (S.C.)
| |
Collapse
|
13
|
Lu S, Xie X, Hu J, Lin H, Li F, Zhou R, Guo J, Wu S, He J. New anti-influenza A viral norsesquiterpenoids isolated from feces-residing Streptomyces sp. Fitoterapia 2021; 157:105107. [PMID: 34952142 DOI: 10.1016/j.fitote.2021.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Three novel norsesquiterpenoids, (2R,4S,8aR)-8,8a,1,2,3,4-hexahydro-2-hydroxy-4,8a-dimethyl-2(2H)-naphthalenone (1), (1S,3S,4S,4aS,8aR)-4,8a-dimethyloctahydronaphthalene-1,3,4a(3H)-triol(2), (4S,4aS,8aS)-octahydro-4a-hydroxy-4, 8a-dimethyl-1(2H)-naphthalenone (3), as well as six other known analogues (4-9), were isolated from the culture broth of Streptomyces sp. XM17, an actinobacterial strain inhabiting the fresh feces of the giant panda Ailuropoda melanoleuca. The chemical structures of 1-3 were elucidated comprehensively by NMR spectroscopic and MS analyses, furthermore, the stereochemical configurations were resolved by NOESY experiments, along with ECD spectral and single-crystal X-ray crystallographic analyses. These compounds were then tested for their antiviral activities using the "pretreatment of virus" approach, which showed that most of these compounds were potent in inhibiting the entry of influenza A virus, with IC50 values ranging from 5 to 49 nM and selectivity indices all above 500.
Collapse
Affiliation(s)
- Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China; Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Xi Xie
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China
| | - Jianan Hu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China
| | - Haixing Lin
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China
| | - Fangfang Li
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China
| | - Runhong Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China
| | - Jiayin Guo
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China
| | - Shaohua Wu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
14
|
Wu XZ, Huang WJ, Liu W, Mándi A, Zhang Q, Zhang L, Zhang W, Kurtán T, Yuan CS, Zhang C. Penicisteckins A-F, Isochroman-Derived Atropisomeric Dimers from Penicillium steckii HNNU-5B18. JOURNAL OF NATURAL PRODUCTS 2021; 84:2953-2960. [PMID: 34787427 DOI: 10.1021/acs.jnatprod.1c00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Penicisteckins A-D (1-4), two pairs of atropodiastereomeric biaryl-type hetero- and homodimeric bis-isochromans with 7,5'- and 7,7'-linkages and a pair of atropodiastereomeric 2-(isochroman-5-yl)-1,4-benzoquinone derivatives [penicisteckins E (5) and F (6)], were isolated from the Penicillium steckii HNNU-5B18. Their structures including the absolute configuration were determined by extensive spectroscopic and single-crystal X-ray diffraction analysis and TDDFT-ECD calculations. Both the bis-isochromans and the isochroman/1,4-benzoquinone conjugates represent novel biaryl scaffolds containing both central and axial chirality elements. The monomer anserinone B (8) exhibited potent antibacterial activities against Staphylococcus aureus ATCC 29213 and methicillin-resistant Staphylococcus aureus with minimal inhibition concentration values ranging from 2 to 8 μg mL-1. Plausible biosynthetic pathways of 1-6 are proposed, which suggest how the absolute configurations of the isolates were established during the biosynthetic scheme.
Collapse
Affiliation(s)
- Xiao-Zhen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wen-Jun Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Cheng-Shan Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
15
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
16
|
Bio-Guided Isolation of Antimalarial Metabolites from the Coculture of Two Red Sea Sponge-Derived Actinokineospora and Rhodococcus spp. Mar Drugs 2021; 19:md19020109. [PMID: 33673168 PMCID: PMC7918646 DOI: 10.3390/md19020109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Coculture is a productive technique to trigger microbes’ biosynthetic capacity by mimicking the natural habitats’ features principally by competition for food and space and interspecies cross-talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59, resulted in the induction of several non-traced metabolites in their axenic cultures, which were detected using LC–HRMS metabolomics analysis. Antimalarial guided isolation of the cocultured fermentation led to the isolation of the angucyclines actinosporins E (1), H (2), G (3), tetragulol (5) and the anthraquinone capillasterquinone B (6), which were not reported under axenic conditions. Interestingly, actinosporins were previously induced when the axenic culture of the Actinokineospora spheciospongiae strain EG49 was treated with signalling molecule N-acetyl-d-glucosamine (GluNAc); this finding confirmed the effectiveness of coculture in the discovery of microbial metabolites yet to be discovered in the axenic fermentation with the potential that could be comparable to adding chemical signalling molecules in the fermentation flask. The isolated angucycline and anthraquinone compounds exhibited in vitro antimalarial activity and good biding affinity against lysyl-tRNA synthetase (PfKRS1), highlighting their potential developability as new antimalarial structural motif.
Collapse
|
17
|
Diversity and Bioactive Potential of Actinobacteria Isolated from a Coastal Marine Sediment in Northern Portugal. Microorganisms 2020; 8:microorganisms8111691. [PMID: 33143202 PMCID: PMC7692593 DOI: 10.3390/microorganisms8111691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have had increasing applications in the biotechnological sector, with a large fraction of these substances being channeled to the pharmaceutical industry due to their important pharmacological properties. The discovery of new bioactive molecules with novel mechanisms of action constitutes a promising solution for the design of alternative therapeutic solutions. Actinobacteria are a large group of morphologically and physiologically diverse bacteria well known for their production of biotechnologically relevant compounds. The Portuguese coast is scantly explored in terms of Actinobacteria diversity and respective bioactive potential, offering a good opportunity to find new Actinobacteria taxa and bioactive natural products. In this study, we investigated the Actinobacteria diversity associated with a sediment sample collected from the intertidal zone of a beach in northern Portugal, through a cultivation-dependent approach, and screened its antimicrobial and cytotoxic potential. A total of 52 Actinobacteria strains were recovered from the marine sediment, with the largest fraction of the isolates belonging to the genus Micromonospora. Bioactivity screening assays identified crude extracts of six Streptomyces strains active against C. albicans, exhibiting minimum inhibition concentration (MIC) values in the range of 3.90-125 μg mL-1. Twenty-five Actinobacteria crude extracts (obtained from strains of the genera Micromonospora, Streptomyces and Actinomadura) exhibited significant effects on the viability of at least one tested cancer cell line (breast ductal carcinoma T-47D and liver hepatocellular carcinoma HepG2). The Actinobacteria extracts demonstrating activity in the antimicrobial and/or cytotoxic assays were subjected to metabolomic analysis (Mass spectrometry (MS)-based dereplication and molecular networking analyses), indicating the presence of four clusters that may represent new natural products. The results obtained demonstrate the importance of bioprospecting underexplored environments, like the Portuguese coast, for enhancing the discovery of new natural products, and call attention to the relevance of preserving the natural genetic diversity of coastal environments.
Collapse
|
18
|
Fang Z, Jiang X, Zhang Q, Zhang L, Zhang W, Yang C, Zhang H, Zhu Y, Zhang C. S-Bridged Thioether and Structure-Diversified Angucyclinone Derivatives from the South China Sea-Derived Micromonospora echinospora SCSIO 04089. JOURNAL OF NATURAL PRODUCTS 2020; 83:3122-3130. [PMID: 32970433 DOI: 10.1021/acs.jnatprod.0c00719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Angucyclinces belong to the class of aromatic polyketides and display a wide variety of structure diversity and pharmaceutical significance. Herein we report the isolation, structure elucidation, and bioactivity evaluation of structure-diversified angucyclinone derivatives and anthracene from the South China Sea-derived Micromonospora echinospora SCSIO 04089, including a thioether, gephysulfuromycin (1), two new benzo[b]phenanthridines, homophenanthroviridone (2) and homophenanthridonamide (3), a new benzo[b]fluorene, homostealthin D (4), a new naphtho[2,3-b]benzofuran, nenesfuran (5), a new naphthoquinone, WS-5995 D (6) and a new anthracene, nenesophanol (7), together with three known compounds (8-10). Their structures were elucidated by extensive spectroscopic analyses. The structures of 1-3 and 5-8 were confirmed by X-ray crystallographic analyses. Gephysulfuromycin (1) featured a rare single S-bridged 3,12a-epithiotetraphene skeleton. Homophenanthroviridone (2) was found to be cytotoxic to SF-268, MCF-7, and HepG2 cell lines with IC50 values of 5.4 ± 0.4, 6.8 ± 0.3, and 1.4 ± 0.1 μM, respectively. Compound 2 was also active against Gram-positive bacteria with MIC (minimal inhibition concentration) values ranging 2-4 μg mL-1.
Collapse
Affiliation(s)
- Zhuangjie Fang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
19
|
Qi S, Gui M, Li H, Yu C, Li H, Zeng Z, Sun P. Secondary Metabolites from Marine Micromonospora: Chemistry and Bioactivities. Chem Biodivers 2020; 17:e2000024. [PMID: 32100940 DOI: 10.1002/cbdv.202000024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/25/2020] [Indexed: 02/02/2023]
Abstract
Marine Micromonospora was revealed to be a rather untapped and a rich source of chemically diverse and unique bioactive natural products. This review is aimed to make a comprehensive survey of secondary metabolites that were derived from marine Micromonospora including chemical diversity and biological activities. A total of 116 compounds from 41 marine Micromonospora species have been reported, covering the literatures from 1997 to 2019. These compounds contain several structural classes such as polyketides (PKS), nonribosomal peptides (NRPS), PKS-NRPS hybrids, terpenes and others, and they present cytotoxic, antibacterial, antiparasitic, chemopreventive or antioxidant activities.
Collapse
Affiliation(s)
- Sisi Qi
- School of Resource and Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Ave., Nanchang, 330031, P. R. China
| | - Min Gui
- State Key Laboratory of Dairy Biotechnology, Technology Center and Dairy Research Institute of Bright Dairy and Food Co., Ltd., 1518 West Jiangchang Road, Shanghai, 200436, P. R. China
| | - Huanhuan Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Chunbo Yu
- Department of Pharmacy, Jinhua Central Hospital, 365 Renmin East Road, Jinhua, 321000, P. R. China
| | - Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Zheling Zeng
- School of Resource and Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Ave., Nanchang, 330031, P. R. China.,State Key Laboratory of Food Science and Technology, Nanchang University, 999 Xuefu Ave., Nanchang, 330047, P. R. China.,Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, 999 Xuefu Ave., Nanchang, 330031, P. R. China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| |
Collapse
|
20
|
Yang C, Qian R, Xu Y, Yi J, Gu Y, Liu X, Yu H, Jiao B, Lu X, Zhang W. Marine Actinomycetes-derived Natural Products. Curr Top Med Chem 2020; 19:2868-2918. [PMID: 31724505 DOI: 10.2174/1568026619666191114102359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Actinomycetes is an abundant resource for discovering a large number of lead compounds, which play an important role in microbial drug discovery. Compared to terrestrial microorganisms, marine actinomycetes have unique metabolic pathways because of their special living environment, which has the potential to produce a variety of bioactive substances. In this paper, secondary metabolites isolated from marine actinomycetes are reviewed (2013-2018), most of which exhibited cytotoxic, antibacterial, and antiviral biological activities.
Collapse
Affiliation(s)
- Chengfang Yang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Rui Qian
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yao Xu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Junxi Yi
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yiwen Gu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoyu Liu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Haobing Yu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, Australia.,Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
21
|
Xue W, Wang D, Li C, Zhai Z, Wang T, Liang Y, Zhang Z. π-Expanded Coumarins: One-Pot Photo Synthesis of 5H-Benzo[12,1]tetrapheno[7,6,5-cde]chromen-5-ones and Photophysical Properties. J Org Chem 2020; 85:3689-3698. [DOI: 10.1021/acs.joc.9b03327] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenhao Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Ding Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Chenyu Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zheng Zhai
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Tao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yong Liang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zunting Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
22
|
Wang Z, Wang L, Wang Z, Li P. Visible‐Light‐Induced Tandem Cyclization of Alkynoates and Phenylacetylenes to Naphtho[2,1‐
c
]coumarins. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhihui Wang
- Advanced Research Institute and Department of ChemistryTaizhou University Taizhou, Zhejiang 318000 P. R. China
- Department of ChemistryHuaibei Normal University Huaibei, Anhui 235000 P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of ChemistryTaizhou University Taizhou, Zhejiang 318000 P. R. China
- Department of ChemistryHuaibei Normal University Huaibei, Anhui 235000 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of ChemistryTaizhou University Taizhou, Zhejiang 318000 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| | - Pinhua Li
- Department of ChemistryHuaibei Normal University Huaibei, Anhui 235000 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
23
|
Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes. Curr Microbiol 2019; 77:645-656. [PMID: 31069462 DOI: 10.1007/s00284-019-01698-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Marine actinomycetes are prolific sources of marine drug discovery system contributing for several bioactive compounds of biomedical prominence. Metagenomics, a culture-independent technique through its sequence- and function-based screening has led to the discovery and synthesis of numerous biologically significant compounds like polyketide synthase, Non-ribosomal peptide synthetase, antibiotics, and biocatalyst. While metagenomics offers different advantages over conventional sequencing techniques, they also have certain limitations including bias classification, non-availability of quality DNA samples, heterologous expression, and host selection. The assimilation of advanced amplification and screening methods such as φ29 DNA polymerase, Next-Generation Sequencing, Cosmids, and recent bioinformatics tools like automated genome mining, anti-SMASH have shown promising results to overcome these constrains. Consequently, functional genomics and bioinformatics along with synthetic biology will be crucial for the success of the metagenomic approach and indeed for exploring new possibilities among the microbial consortia for the future drug discovery process.
Collapse
|
24
|
Subramani R, Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar Drugs 2019; 17:E249. [PMID: 31035452 PMCID: PMC6562664 DOI: 10.3390/md17050249] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
Collapse
Affiliation(s)
- Ramesh Subramani
- School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
25
|
Miao M, Jin M, Xu H, Chen P, Zhang S, Ren H. Synthesis of 5H-Dibenzo[c,g]chromen-5-ones via FeCl3-Mediated Tandem C–O Bond Cleavage/6π Electrocyclization/Oxidative Aromatization. Org Lett 2018; 20:5718-5722. [DOI: 10.1021/acs.orglett.8b02434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maozhong Miao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Mengchao Jin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Huaping Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Panpan Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Shouzhi Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hongjun Ren
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
26
|
Cường NX, Nhiệm NX, Thanh NV, Tài BH, Hương ĐTM, Cường PV, Nam NH, Long PQ, Kiệm PV, Minh CV. Điểm lại các nghiên cứu hóa học và hoạt tính sinh học một số loài sinh vật biển Việt Nam trong giai đoạn 2013-2017. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.15625/vjc.2018-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nguyễn Xuân Cường
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| | - Nguyễn Xuân Nhiệm
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| | - Nguyễn Văn Thanh
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| | - Bùi Hữu Tài
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| | | | - Phạm Văn Cường
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| | - Nguyễn Hoài Nam
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| | | | - Phan Văn Kiệm
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| | - Châu Văn Minh
- Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST)
| |
Collapse
|
27
|
Wang X, Yu H, Zhang Y, Lu X, Wang B, Liu X. Bioactive Pimarane-Type Diterpenes from Marine Organisms. Chem Biodivers 2017; 15. [DOI: 10.1002/cbdv.201700276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoli Wang
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Marine Science and Technology College; Zhejiang Ocean University; 1 South Haida Road Zhoushan 316022 P. R. China
| | - Haobing Yu
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| | - Yixin Zhang
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| | - Xiaoling Lu
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| | - Bin Wang
- School of Food and Pharmacy; Zhejiang Ocean University; 1 South Haida Road Zhoushan 316022 P. R. China
| | - Xiaoyu Liu
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| |
Collapse
|
28
|
Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front Microbiol 2017; 8:1106. [PMID: 28663748 PMCID: PMC5471306 DOI: 10.3389/fmicb.2017.01106] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-siSouth Korea
| |
Collapse
|
29
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
30
|
Islam MT. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother Res 2017; 31:691-712. [PMID: 28370843 DOI: 10.1002/ptr.5800] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Southern University Bangladesh, Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|
31
|
Cell wall distracting anti-Methicillin-resistant Staphylococcus aureus compound PVI331 from a marine sponge associated Streptomyces. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|