1
|
Zoe LH, David SR, Rajabalaya R. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications. Toxicol Rep 2023; 11:83-106. [PMID: 38187113 PMCID: PMC10767636 DOI: 10.1016/j.toxrep.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 01/09/2024] Open
Abstract
Topic definition This literature review aims to update the current knowledge on toxicity of chitosan nanoparticles, compare the recent findings and identify the gaps with knowledge that is present for the chitosan nanoparticles. Methods The publications between 2010 and 2020 were searched in Science Direct, Pubmed.gov, Google Scholar, Research Gate, and ClinicalTrials.gov, according to the inclusion and exclusion criteria. 30 primary research studies were obtained from the literature review to compare the in vitro in vivo toxicity profiles among the chitosan nanoparticles. Major highlights Chitosan nanoparticles and other types of nanoparticles show cytotoxic effects on cancer cells while having minimal toxicity on normal cells. This apparent effect poses some considerations for use in incorporating cancer therapeutics into chitosan nanoparticles as an administration form. The concentration, duration of exposure, and pH of the solution can influence nanoparticle cytotoxicity, particularly in zebrafish. Different cell lines exhibit varying degrees of toxicity when exposed to nanoparticles, and of note are liver cells that show toxicity under exposure as indicated by increased alanine transaminase (ALT) levels. Aside from ALT, platelet aggregation can be considered a toxicity induced by chitosan nanoparticles. In addition, zebrafish cells experience the most toxicity, including organ damage, neurobehavioral impairment, and developmental abnormalities, when exposed to nanoparticles. However, nanoparticles may exhibit different toxicity profiles in different organisms, with brain toxicity and liver toxicity being present in zebrafish but not rats. Different organs exhibit varying degrees of toxicity, with the eye and mouth apparently having the lowest toxicity, while the brain, intestine, muscles and lung showing mixed results. Cardiotoxicity induced by chitosan nanoparticles was not observed in zebrafish embryos, and nanoparticles may reduce cardiotoxicity when delivering drug. Toxicity found in an organ may not necessarily mean that it is toxic towards all the cells found in that organ, as muscle toxicity was present when tested in zebrafish but not in C2C12 myoblast cells. Some of the studies conducted may have limitations that need to be reconsidered to account for differing results, with some examples being two experiments done on HeLa cells where one study concluded chitosan nanoparticles were toxic to the cells while the other seems to have no toxicity present. With regards to LD50, one study has stated the concentration of 64.21 mg/ml was found. Finally, smaller nanoparticles generally exhibit higher toxicity in cells compared to larger nanoparticles. Scope for future work This literature review did not uncover any published clinical trials with available results. Subsequent research endeavors should prioritize conducting clinical trials involving human volunteers to directly assess toxicity, rather than relying on cell or animal models.
Collapse
Affiliation(s)
- Liaw Hui Zoe
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| | - Sheba R. David
- School of Pharmacy, University of Wyoming, Laramie, WY 82071, USA
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
2
|
Jokubaite M, Pukenaite G, Marksa M, Ramanauskiene K. Balsam Poplar Buds Extracts-Loaded Gels and Emulgels: Development, Biopharmaceutical Evaluation, and Biological Activity In Vitro. Gels 2023; 9:821. [PMID: 37888394 PMCID: PMC10606801 DOI: 10.3390/gels9100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Balsam poplar buds have been used for wound healing and treating irritated skin in traditional medicine. Balsam poplar buds extracts exhibit anti-inflammatory, antioxidant, and antimicrobial effects. In recent years, scientific research has begun to validate some of these traditional uses, leading to an increased interest in balsam poplar buds as a potential source of natural remedies in modern medicine. The study aims to simulate semi-solid pharmaceutical forms with balsam poplar buds extract and evaluate their quality through biopharmaceutical research. The active compounds identified in Lithuanian poplar buds were p-coumaric acid, cinnamic acid, caffeic acid, galangin, pinocembrin, pinobanksin, and salicin. In gels, pH values ranged from 5.85 ± 0.05 to 5.95 ± 0.07. The determined pH values of emulgels ranged from 5.13 ± 0.05 to 5.66 ± 0.15. After 6 h, the release of active compounds from gels and emulgels ranged from 47.40 ± 2.41% to 71.17 ± 3.54. p-coumaric acid dominates in the balsam poplar buds extracts. The pH values of the prepared sem-solid pharmaceutical forms are suitable for use on the skin. The viscosity of the formulations depends on the amount of gelling agent. All formulations showed antioxidant activity. It is relevant to conduct a more extensive study on the influence of the chosen carrier on the release of active compounds from semi-solid formulations with an extract of balsam poplar buds.
Collapse
Affiliation(s)
- Monika Jokubaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Greta Pukenaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| | - Mindaugas Marksa
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| |
Collapse
|
3
|
Bora L, Iftode A, Muț AM, Vlaia LL, Olteanu GE, Muntean D, Dehelean CA, Buda V, Coneac GH, Danciu C. Stability Profile and Clinical Evaluation of an Innovative Hydrogel Containing Polymeric Micelles as Drug Delivery Systems with Oregano Essential Oil against Fibroepithelial Polyps. Pharmaceuticals (Basel) 2023; 16:980. [PMID: 37513892 PMCID: PMC10386020 DOI: 10.3390/ph16070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Skin tags, also known as fibroepithelial polyps (FPs) or acrochordons, are soft, pigmented excrescences, with a prevalence of 50-60% in the population, occurring especially in the fourth decade of life. To date, FPs have been efficiently eliminated using minimum invasive methods such as surgical removal, cauterization, laser irradiation, and cryosurgery. Over-the-counter treatments are also of interest for patients due to their non-invasive character, but their clinical efficiency has not been clearly demonstrated. This study was designed in order to evaluate the efficacy of a modern-pharmaceutical-formulation-type poloxamer-based binary hydrogel, having Origanum vulgare L. essential oil (OEO-PbH) as an active ingredient in the management of FPs. The formulation has been shown to possess good qualities in terms of stability and sterility. Non-invasive measurements revealed changes in some physiological skin parameters. An increase in transepidermal water loss (TEWL) and erythema index was noted, while skin surface water content (SWC) decreased during eight weeks of treatment. The macroscopic evaluation revealed that the FPs dried and shrunk after topical treatment with OEO-PbH. Clinically, patients presented a lowering of the number of lesions on the treated area of 20-30% after one month of treatment and around 50% after the second month. Histopathological examination suggests that topical treatment with OEO-PbH may induce histological changes in the epidermis, dermis, and fibrovascular cores of FPs, including a loss of thickness, reduced size and number of blood vessels, and low cellularity. These changes may contribute to the observed reduction in size of FPs after treatment with OEO-PbH.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Andrada Iftode
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ana Maria Muț
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lavinia Lia Vlaia
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Gheorghe-Emilian Olteanu
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Microbiology, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Valentina Buda
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Clinical Pharmacy, Communication in Pharmacy and Pharmaceutical Care, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Georgeta Hermina Coneac
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, "Victor Babeș" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Weng J, Durand A, Desobry S. Chitosan-Based Particulate Carriers: Structure, Production and Corresponding Controlled Release. Pharmaceutics 2023; 15:1455. [PMID: 37242694 PMCID: PMC10221392 DOI: 10.3390/pharmaceutics15051455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS, the links between targeted controlled activity, the preparation process and the kinetics of release are detailed, focusing on two types of particulate carriers: matrix particles and capsules. More precisely, the relationship between the size/structure of CS-based particles as multifunctional delivery systems and drug release kinetics (models) is emphasized. The preparation method and conditions greatly influence particle structure and size, which affect release properties. Various techniques available for characterizing particle structural properties and size distribution are reviewed. CS particulate carriers with different structures can achieve various release patterns, including zero-order, multi-pulsed, and pulse-triggered. Mathematical models have an unavoidable role in understanding release mechanisms and their interrelationships. Moreover, models help identify the key structural characteristics, thus saving experimental time. Furthermore, by investigating the close relation between preparation process parameters and particulate structural characteristics as well as their effect on release properties, a novel "on-demand" strategy for the design of drug delivery devices may be developed. This reverse strategy involves designing the production process and the related particles' structure based on the targeted release pattern.
Collapse
Affiliation(s)
- Jiaqi Weng
- Université de Lorraine, LIBio, F-54000 Nancy, France;
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | | |
Collapse
|
5
|
Pérez-González N, Rodríguez-Lagunas MJ, Calpena-Campmany AC, Bozal-de Febrer N, Halbaut-Bellowa L, Mallandrich M, Clares-Naveros B. Caspofungin-Loaded Formulations for Treating Ocular Infections Caused by Candida spp. Gels 2023; 9:gels9040348. [PMID: 37102960 PMCID: PMC10138186 DOI: 10.3390/gels9040348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Fungal keratitis causes corneal blindness worldwide. The treatment includes antibiotics, with Natamycin being the most commonly used; however, fungal keratitis is difficult to treat, so alternative therapies are needed. In situ gelling formulations are a promising alternative; this type of formulation has the advantages of eye drops combined with the advantages of ointments. This study was designed to develop and characterize three formulations containing 0.5% CSP: CSP-O1, CSP-O2, and CSP-O3. CSP is an antifungal drug that acts against a diverse variety of fungi, and Poloxamer 407 (P407) is a polymer of synthetic origin that is able to produce biocompatible, biodegradable, highly permeable gels and is known to be thermoreversible. Short-term stability showed that formulations are best stored at 4 °C, and rheological analysis showed that the only formulation able to gel in situ was CSP-O3. In vitro release studies indicated that CSP-O1 releases CSP most rapidly, while in vitro permeation studies showed that CSP-O3 permeated the most. The ocular tolerance study showed that none of the formulations caused eye irritation. However, CSP-O1 decreased the cornea's transparency. Histological results indicate that the formulations are suitable for use, with the exception of CSP-O3, which induced slight structural changes in the scleral structure. All formulations were shown to have antifungal activity. In view of the results obtained, these formulations could be promising candidates for use in the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - María J Rodríguez-Lagunas
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ana C Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Lyda Halbaut-Bellowa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
6
|
Emir AA, Erunsal SC. Impact of oleuropein on LCD-based stereolithography-assisted fabrication of 3D printed PEGDMA hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Pandey N, Bohra BS, Tiwari H, Pal M, Negi PB, Dandapat A, Mehta S, Sahoo NG. Development of biodegradable chitosan/ graphene oxide nanocomposite via spray drying method for drug loading and delivery application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Sarhan AS, Abdel-Hamid MI, Hanie R. Green synthesis of (CS/OLE) AgNPs and evaluation of their physico-chemical characteristic. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe present article involves the bio-synthesis of (Chitosan/olive leaf extract) silver nanoparticles (CS/OLE) AgNPs using a simple green electrochemical procedure followed by UV-irradiation time. The properties and structure of the resulting (CS/OLE) AgNPs were characterized by employing several analytical techniques including, Infrared spectrum (FT-IR), UV–VIS spectroscopy, X-ray analysis (XRD), energy-dispersive X-ray (EDX) and degredation. Besides, the studying of the thermal characteristics of the (CS/OLE) AgNPs electrets were also investigated. Formation of Ag nanoparticles was observed upon varying the solution color from faint yellow into yellowish brown and was achieved by the appearance of absorption peak at about ~ 410 nm of the resulting AgNPs corresponding to the surface plasmon resonance (SPR). The sharp peaks appear at 32.16°, 46.19°, 54.75°, 57.59°, and 76.7°, indicating the presence of AgNPs as shown from XRD. With comparing the anti-bacterial efficiency of (CS/OLE) AgNPs and (CS/OLE) we found that the AgNPs display a relatively high anti-bacterial activity than in plant extract and chitosan alone. The electrical properties of (CS/OLE) AgNPs films were studied by global thermally stimulated depolarization current (TSDC) spectra for explaining the relaxation phenomena of the samples. In addition, the molecular parameters (The activation energy Ea and pre-exponential time τo), have been evaluated by the Arrhenius equation. The Ea was found in ~ (0.39–0.62 eV) for (CS/OLE).
Collapse
|
9
|
Parhi R, Sahoo SK, Das A. Applications of polysaccharides in topical and transdermal drug delivery: A recent update of literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Anik Das
- GITAM Deemed to be University, India
| |
Collapse
|
10
|
Pérez-González N, Bozal-de Febrer N, Calpena-Campmany AC, Nardi-Ricart A, Rodríguez-Lagunas MJ, Morales-Molina JA, Soriano-Ruiz JL, Fernández-Campos F, Clares-Naveros B. New Formulations Loading Caspofungin for Topical Therapy of Vulvovaginal Candidiasis. Gels 2021; 7:259. [PMID: 34940319 PMCID: PMC8701247 DOI: 10.3390/gels7040259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) poses a significant problem worldwide affecting women from all strata of society. It is manifested as changes in vaginal discharge, irritation, itching and stinging sensation. Although most patients respond to topical treatment, there is still a need for increase the therapeutic arsenal due to resistances to anti-infective agents. The present study was designed to develop and characterize three hydrogels of chitosan (CTS), Poloxamer 407 (P407) and a combination of both containing 2% caspofungin (CSP) for the vaginal treatment of VVC. CTS was used by its mucoadhesive properties and P407 was used to exploit potential advantages related to increasing drug concentration in order to provide a local effect. The formulations were physically, mechanically and morphologically characterized. Drug release profile and ex vivo vaginal permeation studies were performed. Antifungal efficacy against different strains of Candida spp. was also evaluated. In addition, tolerance of formulations was studied by histological analysis. Results confirmed that CSP hydrogels could be proposed as promising candidates for the treatment of VVC.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
| | - Ana C. Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Anna Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - José A. Morales-Molina
- Department of Pharmacy, Torrecárdenas University Hospital, s/n Hermandad de Donantes de Sangre St., 04009 Almeria, Spain;
| | - José L. Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | | | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
11
|
Suryavanshi VS, Maharana T, Jagtap PK. Microencapsulation of Cassia fistula Flower Extract with Chitosan and its Antibacterial Studies. Curr Drug Deliv 2021; 19:980-990. [PMID: 34620063 DOI: 10.2174/1567201818666211006102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The plant used in the present study is Cassia fistula, which belongs to the family Leguminosae and has been used in Traditional medicinal systems ever since due to presence of copious amount of Phytochemicals with varying properties. AIMS This study is focussed on the extraction of phytochemicals from Cassia fistula flower and its subsequent encapsulation into chitosan matrix for applications in drug delivery. Chitosan is approved by FDA for its use in Pharmaceutical industries. METHODS The microsphere thus prepared by the current study is predicted to release the desired extract with medicinal properties in a controlled manner allowing more convenient and desired levels of drug administration as been characterized by several analytical techniques like FT-IR, NMR, Thermal analysis, SEM. The swelling study and release study of the prepared microsphere has been carried out in physiological pH 2 and 7.4. NMR study has shown that sitosterol and friedelin have been encapsulated successfully into the chitosan matrix. RESULTS The microspheres has shown upto 80% swelling in pH 2 upto 8 days and 60% of the in-vitro controlled drug release has also been found in pH 2 upto 2 days. The thermal studies using TGA and DSC supported the thermal stabilities of CS beads, CFFE and CFFE-CS beads also it showed the dispersion of the CFFE in the cavities of Chitosan matrix. CONCLUSION The Biomedical application of the synthesized CFFE-CS beads have also been reported on the basis of their antibacterial studies.
Collapse
Affiliation(s)
| | - Tungabidya Maharana
- Department of Chemistry, National Institute of Technology, Raipur, Chhattisgarh. India
| | - Pratik Kumar Jagtap
- Department of Chemistry, Kalinga University, Naya Raipur, Chhattisgarh. India
| |
Collapse
|
12
|
Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021; 13:polym13193256. [PMID: 34641071 PMCID: PMC8512059 DOI: 10.3390/polym13193256] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a family of molecules with differences in their composition, size, and monomer distribution. These properties have a fundamental effect on the biological and technological performance of the polymer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss how chitosan chemistry can solve the problems related to its poor solubility and can boost the polymer properties. We focus on some of the main biological properties of chitosan and the relationship with the physicochemical properties of the polymer. Then, we review two polymer applications related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and its use as support for biocatalysts. Finally, we briefly describe how making use of the technological properties of chitosan makes it possible to develop a variety of systems for drug delivery.
Collapse
|
13
|
Márquez Valls M, Martínez Labrador A, Halbaut Bellowa L, Bravo Torres D, Granda PC, Miñarro Carmona M, Limón D, Calpena Campmany AC. Biopharmaceutical Study of Triamcinolone Acetonide Semisolid Formulations for Sublingual and Buccal Administration. Pharmaceutics 2021; 13:pharmaceutics13071080. [PMID: 34371771 PMCID: PMC8309082 DOI: 10.3390/pharmaceutics13071080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/20/2023] Open
Abstract
The mouth can be affected by important inflammatory processes resulting from localized or systemic diseases such as diabetes, AIDS and leukemia, among others, and are manifested in various types of buccal sores typically presenting pain. This work focuses on the design, formulation, and characterization of four semisolid formulations for oral mucosa in order to symptomatically treat these painful processes. The formulations have two active pharmaceutical ingredients, triamcinolone acetonide (TA) and lidocaine hydrochloride (LIDO). The formula also contains, as an excipient, Orabase®, which is a protective, hydrophobic, and anhydrous adhesive vehicle, used to retain or facilitate the application of active pharmaceutical ingredients to the oral mucosa. After designing the formulations, an analytical method for TA was validated using HPLC so as to achieve reliable analytical results. Franz-type diffusion cells were used to perform drug release studies using synthetic membrane, and permeation studies using buccal mucosa, estimating the amount and rate of TA permeated across the tissue. Additionally, sublingual permeation studies were carried out to evaluate a scenario of a continuous contact of the tongue with the applied formulation. Permeation fluxes and the amount of TA retained within sublingual mucosa were similar to those in buccal mucosa, also implying anti-inflammatory activity in the part of the tongue that is in direct contact with the formulation. In addition, the dynamic conditions of the mouth were recreated in terms of the presence of phosphate buffered saline, constant movement of the tongue, pH, and temperature, using dissolution equipment. The amount of TA released into the phosphate buffered saline in dynamic conditions (subject to being ingested) is well below the normal oral doses of TA, for which the formulation can be considered safe. The formulations applied to buccal or sublingual mucosas under dynamic conditions permit the successful retention of TA within either tissue, where it exerts anti-inflammatory activity. The four formulations studied show a pseudoplastic and thixotropic behavior, ideal for topical application. These results evidence the potential of these topical formulations in the treatment of inflammatory processes in the buccal mucosa.
Collapse
Affiliation(s)
- Marta Márquez Valls
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (M.M.V.); (A.M.L.); (L.H.B.); (D.B.T.); (P.C.G.); (M.M.C.)
| | - Alejandra Martínez Labrador
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (M.M.V.); (A.M.L.); (L.H.B.); (D.B.T.); (P.C.G.); (M.M.C.)
| | - Lyda Halbaut Bellowa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (M.M.V.); (A.M.L.); (L.H.B.); (D.B.T.); (P.C.G.); (M.M.C.)
| | - Doménica Bravo Torres
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (M.M.V.); (A.M.L.); (L.H.B.); (D.B.T.); (P.C.G.); (M.M.C.)
| | - Paulo C. Granda
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (M.M.V.); (A.M.L.); (L.H.B.); (D.B.T.); (P.C.G.); (M.M.C.)
| | - Montserrat Miñarro Carmona
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (M.M.V.); (A.M.L.); (L.H.B.); (D.B.T.); (P.C.G.); (M.M.C.)
| | - David Limón
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain;
| | - Ana C. Calpena Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (M.M.V.); (A.M.L.); (L.H.B.); (D.B.T.); (P.C.G.); (M.M.C.)
- Correspondence:
| |
Collapse
|
14
|
Rungsawang C, Leelapornpisid P, Sirithunyalug J, Kiattisin K. Spray‐dried polymeric microparticles fabrication for improvement of Homnil rice extract stability. Cereal Chem 2021. [DOI: 10.1002/cche.10436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chareetip Rungsawang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Chiang Mai University Chiang Mai Thailand
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Chiang Mai University Chiang Mai Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy Chiang Mai University Chiang Mai Thailand
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Chiang Mai University Chiang Mai Thailand
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Chiang Mai University Chiang Mai Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
15
|
Tsui CY, Yang CY. Evaluation of Semi-Solid-State Fermentation of Elaeocarpus serratus L. Leaves and Black Soymilk by Lactobacillus plantarum on Bioactive Compounds and Antioxidant Capacity. Foods 2021; 10:foods10040704. [PMID: 33810370 PMCID: PMC8065616 DOI: 10.3390/foods10040704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Elaeocarpus serratus L. leaves (EL) containing phenolic compounds and flavonoids, including myricitrin with pharmacological properties, could be valorized as nutritional additive in foods. In this study, the semi-solid-state fermentation of EL and black soymilk (BS) by Lactobacillus plantarum BCRC 10357 was investigated. Without adding EL in MRS medium, the β-glucosidase activity of L. plantarum quickly reduced to 2.33 ± 0.15 U/mL in 36 h of fermentation; by using 3% EL, the stability period of β-glucosidase activity was prolonged as 12.94 ± 0.69 U/mL in 12 h to 13.71 ± 0.94 in 36 h, showing positive response of the bacteria encountering EL. Using L. plantarum to ferment BS with 3% EL, the β-glucosidase activity increased to 23.78 ± 1.34 U/mL in 24 h, and in the fermented product extract (FPE), the content of myricitrin (2297.06 μg/g-FPE) and isoflavone aglycones (daidzein and genistein, 474.47 μg/g-FPE) at 48 h of fermentation were 1.61-fold and 1.95-fold of that before fermentation (at 0 h), respectively. Total flavonoid content, myricitrin, and ferric reducing antioxidant power in FPE using BS and EL were higher than that using EL alone. This study developed the potential fermented product of black soymilk using EL as a nutritional supplement with probiotics.
Collapse
Affiliation(s)
- Chia-Yu Tsui
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan
| | - Chun-Yao Yang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan
| |
Collapse
|
16
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
17
|
Influence of the xanthan gum as a crosslinking agent on the physicochemical properties of chitosan microparticles containing green coffee extract. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Biodegradable zein active film containing chitosan nanoparticle encapsulated with pomegranate peel extract for food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100511] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem 2020; 310:125976. [DOI: 10.1016/j.foodchem.2019.125976] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
|
20
|
Emulsion incorporating Eugenia dysenterica aqueous extract entrapped in chitosan microparticles as a novel topical treatment of cutaneous infections. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
A study on development of alternative biopolymers based proton exchange membrane for microbial fuel cells and effect of blending ratio and ionic crosslinking on bioenergy generation and COD removal. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1957-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chem 2019; 279:40-48. [DOI: 10.1016/j.foodchem.2018.11.127] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/30/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022]
|
23
|
Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int J Mol Sci 2019; 20:E332. [PMID: 30650540 PMCID: PMC6359256 DOI: 10.3390/ijms20020332] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| |
Collapse
|
24
|
|
25
|
Roque L, Castro P, Molpeceres J, Viana AS, Roberto A, Reis C, Rijo P, Tho I, Sarmento B, Reis C. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers (Basel) 2018; 10:polym10020213. [PMID: 30966249 PMCID: PMC6414895 DOI: 10.3390/polym10020213] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.
Collapse
|
27
|
Polyphenols and Their Interactions With Other Dietary Compounds: Implications for Human Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:103-144. [PMID: 29555067 DOI: 10.1016/bs.afnr.2017.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regular and optimal intake of polyphenols associates with numerous health-promoting effects. Bioavailability and activity of polyphenols depend on foods' structure and interactions with other food constituents, especially proteins, lipids, and carbohydrates. Polyphenols-proteins interactions can result in various biological effects, such as sense of astringency. So far, polyphenols interactions with food lipids have not been of special importance, except in case of plant oils. Polyphenols-carbohydrates interactions can influence the organoleptic properties, while interactions with dietary fibers are particularly significant. Polyphenols can decrease the synthesis of fats and fatty acids in the liver, or delay their absorption in intestines. Also, polyphenols can slow down digestion of carbohydrates, through the inhibition of digestive enzymes or modulation of glucose uptake. Both animal and plant proteins have low impact on the bioavailability of polyphenols, but some in vitro studies reported that milk proteins could enhance intestinal absorption of polyphenols from tea. Dietary fats may alter the passage of polyphenols through gastrointestinal tract and impact absorption of more hydrophobic polyphenols in particular. While some studies reported that associations with carbohydrates could decrease bioavailability of polyphenols, the others showed the opposite effects. Macronutrients can be used for encapsulation of polyphenols, which can increase their bioavailability and ensure controlled and targeted release. Polyphenols' interactions in the body include their incorporation in cell membranes which causes changes in fatty acid profile and impacts membrane-bound transporters and enzymes. Finally, gut microbiota plays essential role in metabolism of both polyphenols and macronutrients and thus can have great impact on their interactions.
Collapse
|
28
|
Sanz R, Clares B, Mallandrich M, Suñer-Carbó J, Montes MJ, Calpena AC. Development of a mucoadhesive delivery system for control release of doxepin with application in vaginal pain relief associated with gynecological surgery. Int J Pharm 2017; 535:393-401. [PMID: 29146542 DOI: 10.1016/j.ijpharm.2017.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/05/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
The main purpose of this study was to develop a semisolid mucoadhesive formulation for the non-invasive vaginal administration of doxepin (DOX) for relief of pain derived from the scarring process after surgery. An orafix® platform loading DOX was tested for adequate stability, rheology and vaginal mucoadhesion capacity. The formulation exhibited appropriate pH and was microbiologically stable. The rheological studies confirmed its pseudoplastic and thixotropic nature with prevalence of the elastic behavior component over the viscous one. Appropriate syringeability and spreadability results were also confirmed. Different experiments showed adequate mucoadhesion capacity even in the presence of simulated vaginal fluid. Finally, DOX release, permeation and retention in vaginal mucosa studies were also accomplished with promising results. DOX release kinetics followed the modified Higuchi model and the permeation studies did not render such high values as to suggest potential systemic absorption which could lead to undesirable systemic side effects. Therefore, we can hypostatize that the proposed formulation may assist to fill in the therapeutic gap regarding pure pain relief at local level in vagina.
Collapse
Affiliation(s)
- Roser Sanz
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain.
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - María Jesús Montes
- Department of Biology, Healthcare and the Environment, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Letícia Braz A, Ahmed I. Manufacturing processes for polymeric micro and nanoparticles and their biomedical applications. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.1.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Song T, Sun R. Pharmacodynamics study of zedoary turmeric oil chitosan microspheres administered via arterial embolization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1958-1963. [DOI: 10.3109/21691401.2015.1115411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|