1
|
Soong YHV, Abid U, Chang AC, Ayafor C, Patel A, Qin J, Xu J, Lawton C, Wong HW, Sobkowicz MJ, Xie D. Enzyme selection, optimization, and production toward biodegradation of post-consumer poly(ethylene terephthalate) at scale. Biotechnol J 2023; 18:e2300119. [PMID: 37594123 DOI: 10.1002/biot.202300119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have inspired enormous research on biorecycling of PET. This study summarizes our research efforts toward large-scale, efficient, and economical biodegradation of post-consumer waste PET, including PET hydrolase selection and optimization, high-yield enzyme production, and high-capacity enzymatic degradation of post-consumer waste PET. First, genes encoding PETase and MHETase from Ideonella sakaiensis and the ICCG variant of leaf-branch compost cutinase (LCCICCG ) were codon-optimized and expressed in Escherichia coli BL21(DE3) for high-yield production. To further lower the enzyme production cost, a pelB leader sequence was fused to LCCICCG so that the enzyme can be secreted into the medium to facilitate recovery. To help bind the enzyme on the hydrophobic surface of PET, a substrate-binding module in a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM) was fused to the C-terminus of LCCICCG . The resulting four different LCCICCG variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), together with PETase and MHETase, were compared for PET degradation efficiency. A fed-batch fermentation process was developed to produce the target enzymes up to 1.2 g L-1 . Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation of 200 g L-1 recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an economical and scalable biorecycling process toward a circular PET economy.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Umer Abid
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Allen C Chang
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Christian Ayafor
- Energy Engineering Program, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Akanksha Patel
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jin Xu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Carl Lawton
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Margaret J Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
2
|
Matinja AI, Kamarudin NHA, Leow ATC, Oslan SN, Ali MSM. Cold-Active Lipases and Esterases: A Review on Recombinant Overexpression and Other Essential Issues. Int J Mol Sci 2022; 23:ijms232315394. [PMID: 36499718 PMCID: PMC9740821 DOI: 10.3390/ijms232315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cold environments characterised by diverse temperatures close to or below the water freezing point dominate about 80% of the Earth's biosphere. One of the survival strategies adopted by microorganisms living in cold environments is their expression of cold-active enzymes that enable them to perform an efficient metabolic flux at low temperatures necessary to thrive and reproduce under those constraints. Cold-active enzymes are ideal biocatalysts that can reduce the need for heating procedures and improve industrial processes' quality, sustainability, and cost-effectiveness. Despite their wide applications, their industrial usage is still limited, and the major contributing factor is the lack of complete understanding of their structure and cold adaptation mechanisms. The current review looked at the recombinant overexpression, purification, and recent mechanism of cold adaptation, various approaches for purification, and three-dimensional (3D) crystal structure elucidation of cold-active lipases and esterase.
Collapse
Affiliation(s)
- Adamu Idris Matinja
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Science, Bauchi State University, Gadau 751105, Nigeria
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
3
|
Carr CM, de Oliveira BFR, Jackson SA, Laport MS, Clarke DJ, Dobson ADW. Identification of BgP, a Cutinase-Like Polyesterase From a Deep-Sea Sponge-Derived Actinobacterium. Front Microbiol 2022; 13:888343. [PMID: 35495686 PMCID: PMC9039725 DOI: 10.3389/fmicb.2022.888343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many marine bacteria produce extracellular enzymes that degrade complex molecules to facilitate their growth in environmental conditions that are often harsh and low in nutrients. Marine bacteria, including those inhabiting sea sponges, have previously been reported to be a promising source of polyesterase enzymes, which have received recent attention due to their potential ability to degrade polyethylene terephthalate (PET) plastic. During the screening of 51 marine bacterial isolates for hydrolytic activities targeting ester and polyester substrates, a Brachybacterium ginsengisoli B129SM11 isolate from the deep-sea sponge Pheronema sp. was identified as a polyesterase producer. Sequence analysis of genomic DNA from strain B129SM11, coupled with a genome "mining" strategy, allowed the identification of potential polyesterases, using a custom database of enzymes that had previously been reported to hydrolyze PET or other synthetic polyesters. This resulted in the identification of a putative PET hydrolase gene, encoding a polyesterase-type enzyme which we named BgP that shared high overall similarity with three well-characterized PET hydrolases-LCC, TfCut2, and Cut190, all of which are key enzymes currently under investigation for the biological recycling of PET. In silico protein analyses and homology protein modeling offered structural and functional insights into BgP, and a detailed comparison with Cut190 revealed highly conserved features with implications for both catalysis and substrate binding. Polyesterase activity was confirmed using an agar-based polycaprolactone (PCL) clearing assay, following heterologous expression of BgP in Escherichia coli. This is the first report of a polyesterase being identified from a deep-sea sponge bacterium such as Brachybacterium ginsengisoli and provides further insights into marine-derived polyesterases, an important family of enzymes for PET plastic hydrolysis. Microorganisms living in association with sponges are likely to have increased exposure to plastics and microplastics given the wide-scale contamination of marine ecosystems with these plastics, and thus they may represent a worthwhile source of enzymes for use in new plastic waste management systems. This study adds to the growing knowledge of microbial polyesterases and endorses further exploration of marine host-associated microorganisms as a potentially valuable source of this family of enzymes for PET plastic hydrolysis.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| | - Bruno Francesco Rodrigues de Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Singh N, Singh V, Singh MP. Microbial degradation of lignocellulosic biomass for bioenergy production: A metagenomic-based approach. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2056451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nidhi Singh
- Centre of Bioinformatics, University of Allahabad, Allahabad, India
- School of Biochemical Engineering, IIT (BHU), Varanasi, India
| | - Veer Singh
- Centre of Biotechnology, University of Allahabad, Allahabad, India
| | - Mohan P. Singh
- Centre of Biotechnology, University of Allahabad, Allahabad, India
| |
Collapse
|
5
|
Metagenomic Approaches as a Tool to Unravel Promising Biocatalysts from Natural Resources: Soil and Water. Catalysts 2022. [DOI: 10.3390/catal12040385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural resources are considered a promising source of microorganisms responsible for producing biocatalysts with great relevance in several industrial areas. However, a significant fraction of the environmental microorganisms remains unknown or unexploited due to the limitations associated with their cultivation in the laboratory through classical techniques. Metagenomics has emerged as an innovative and strategic approach to explore these unculturable microorganisms through the analysis of DNA extracted from environmental samples. In this review, a detailed discussion is presented on the application of metagenomics to unravel the biotechnological potential of natural resources for the discovery of promising biocatalysts. An extensive bibliographic survey was carried out between 2010 and 2021, covering diverse metagenomic studies using soil and/or water samples from different types and locations. The review comprises, for the first time, an overview of the worldwide metagenomic studies performed in soil and water and provides a complete and global vision of the enzyme diversity associated with each specific environment.
Collapse
|
6
|
Soong YHV, Sobkowicz MJ, Xie D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering (Basel) 2022; 9:98. [PMID: 35324787 PMCID: PMC8945055 DOI: 10.3390/bioengineering9030098] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Margaret J. Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
7
|
Trindade M, Sithole N, Kubicki S, Thies S, Burger A. Screening Strategies for Biosurfactant Discovery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:17-52. [PMID: 34518910 DOI: 10.1007/10_2021_174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isolation and screening of bacteria and fungi for the production of surface-active compounds has been the basis for the majority of the biosurfactants discovered to date. Hence, a wide variety of well-established and relatively simple methods are available for screening, mostly focused on the detection of surface or interfacial activity of the culture supernatant. However, the success of any biodiscovery effort, specifically aiming to access novelty, relies directly on the characteristics being screened for and the uniqueness of the microorganisms being screened. Therefore, given that rather few novel biosurfactant structures have been discovered during the last decade, advanced strategies are now needed to widen access to novel chemistries and properties. In addition, more modern Omics technologies should be considered to the traditional culture-based approaches for biosurfactant discovery. This chapter summarizes the screening methods and strategies typically used for the discovery of biosurfactants and highlights some of the Omics-based approaches that have resulted in the discovery of unique biosurfactants. These studies illustrate the potentially enormous diversity that has yet to be unlocked and how we can begin to tap into these biological resources.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa.
| | - Nombuso Sithole
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anita Burger
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
8
|
Schwarz M, Murphy EJ, Foley AM, Woods DF, Castilla IA, Reen FJ, Collins SG, O'Gara F, Maguire AR. Exploring the synthetic potential of a marine transaminase including discrimination at a remote stereocentre. Org Biomol Chem 2021; 19:188-198. [PMID: 33119023 DOI: 10.1039/d0ob01848a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The marine transaminase, P-ω-TA, can be employed for the transamination from 1-aminotetralins and 1-aminoindanes with differentiation of stereochemistry at both the site of reaction and at a remote stereocentre resulting in formation of ketone products with up to 93% ee. While 4-substituents are tolerated on the tetralin core, the presence of 3- or 8-substituents is not tolerated by the transaminase. In general P-ω-TA shows capacity for remote diastereoselectivity, although both the stereoselectivity and efficiency are dependent on the specific substrate structure. Optimum efficiency and selectivity are seen with 4-haloaryl-1-aminotetralins and 3-haloaryl-1-aminoindanes, which may be associated with the marine origin of this enzyme.
Collapse
Affiliation(s)
- Maria Schwarz
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, T12 K8AF, Cork, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Carr CM, Clarke DJ, Dobson ADW. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Front Microbiol 2020; 11:571265. [PMID: 33262744 PMCID: PMC7686037 DOI: 10.3389/fmicb.2020.571265] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Plastic has rapidly transformed our world, with many aspects of human life now relying on a variety of plastic materials. Biological plastic degradation, which employs microorganisms and their degradative enzymes, has emerged as one way to address the unforeseen consequences of the waste streams that have resulted from mass plastic production. The focus of this review is microbial hydrolase enzymes which have been found to act on polyethylene terephthalate (PET) plastic. The best characterized examples are discussed together with the use of genomic and protein engineering technologies to obtain PET hydrolase enzymes for different applications. In addition, the obstacles which are currently limiting the development of efficient PET bioprocessing are presented. By continuing to study the possible mechanisms and the structural elements of key enzymes involved in microbial PET hydrolysis, and by assessing the ability of PET hydrolase enzymes to work under practical conditions, this research will help inform large-scale waste management operations. Finally, the contribution of microbial PET hydrolases in creating a potential circular PET economy will be explored. This review combines the current knowledge on enzymatic PET processing with proposed strategies for optimization and use, to help clarify the next steps in addressing pollution by PET and other plastics.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Gavin DP, Reen FJ, Rocha-Martin J, Abreu-Castilla I, Woods DF, Foley AM, Sánchez-Murcia PA, Schwarz M, O'Neill P, Maguire AR, O'Gara F. Genome mining and characterisation of a novel transaminase with remote stereoselectivity. Sci Rep 2019; 9:20285. [PMID: 31889089 PMCID: PMC6937235 DOI: 10.1038/s41598-019-56612-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
Microbial enzymes from pristine niches can potentially deliver disruptive opportunities in synthetic routes to Active Pharmaceutical Ingredients and intermediates in the Pharmaceutical Industry. Advances in green chemistry technologies and the importance of stereochemical control, further underscores the application of enzyme-based solutions in chemical synthesis. The rich tapestry of microbial diversity in the oceanic ecosystem encodes a capacity for novel biotransformations arising from the chemical complexity of this largely unexplored bioactive reservoir. Here we report a novel ω-transaminase discovered in a marine sponge Pseudovibrio sp. isolate. Remote stereoselection using a transaminase has been demonstrated for the first time using this novel protein. Application to the resolution of an intermediate in the synthesis of sertraline highlights the synthetic potential of this novel biocatalyst discovered through genomic mining. Integrated chemico-genomics revealed a unique substrate profile, while molecular modelling provided structural insights into this ‘first in class’ selectivity at a remote chiral centre.
Collapse
Affiliation(s)
- D P Gavin
- School of Chemistry; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F J Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, T12 K8AF, Cork, Ireland
| | - J Rocha-Martin
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - I Abreu-Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - D F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - A M Foley
- School of Chemistry, School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - P A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090, Vienna, Austria
| | - M Schwarz
- School of Chemistry; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - P O'Neill
- Pfizer Process Development Centre, Loughbeg, Cork, Ireland
| | - A R Maguire
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland. .,School of Chemistry, School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| | - F O'Gara
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland. .,BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland. .,Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia and Telethon Kids Institute, Perth, WA, 6008, Australia.
| |
Collapse
|
12
|
Barbosa AJM, Roque ACA. Free Marine Natural Products Databases for Biotechnology and Bioengineering. Biotechnol J 2019; 14:e1800607. [PMID: 31297982 DOI: 10.1002/biot.201800607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Marine organisms and micro-organisms are a source of natural compounds with unique chemical features. These chemical properties are useful for the discovery of new functions and applications of marine natural products (MNPs). To extensively exploit the potential implementations of MNPs, they are gathered in chemical databases that allow their study and screening for applications of biotechnological interest. However, the classification of MNPs is currently poor in generic chemical databases. The present availability of free-access-focused MNP databases is scarce and the molecular diversity of these databases is still very low when compared to the paid-access ones. In this review paper, the current scenario of free-access MNP databases is presented as well as the hindrances involved in their development, mainly compound dereplication. Examples and opportunities for using freely accessible MNP databases in several important areas of biotechnology are also assessed. The scope of this paper is, as well, to notify the latent potential of these information sources for the discovery and development of new MNPs in biotechnology, and push future efforts to develop a public domain MNP database freely available for the scientific community.
Collapse
Affiliation(s)
- Arménio J M Barbosa
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Ana C A Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
13
|
Pozzo T, Higdon SM, Pattathil S, Hahn MG, Bennett AB. Characterization of novel glycosyl hydrolases discovered by cell wall glycan directed monoclonal antibody screening and metagenome analysis of maize aerial root mucilage. PLoS One 2018; 13:e0204525. [PMID: 30256843 PMCID: PMC6157868 DOI: 10.1371/journal.pone.0204525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
An indigenous maize landrace from the Sierra Mixe region of Oaxaca, Mexico exhibits extensive formation of aerial roots which exude large volumes of a polysaccharide-rich gel matrix or "mucilage" that harbors diazotrophic microbiota. We hypothesize that the mucilage associated microbial community carries out multiple functions, including disassembly of the mucilage polysaccharide. In situ, hydrolytic assay of the mucilage revealed endogenous arabinofuranosidase, galactosidase, fucosidase, mannosidase and xylanase activities. Screening the mucilage against plant cell wall glycan-specific monoclonal antibodies recognized the presence of carbohydrate epitopes of hemicellulosic polysaccharides like xyloglucan (both non-fucosylated and fucosylated), xylan (both substituted and unsubstituted xylan domains) and pectic-arabinogalactans, all of which are potential carbon sources for mucilage microbial residents. Mucilage metagenome annotation using MG-RAST identified the members forming the microbial community, and gene fragments with predicted functions associated with carbohydrate disassembly. Data from the in situ hydrolytic activity and monoclonal antibody screening assays were used to guide the selection of five full length genes with predicted glycosyl hydrolase function from the GenBank database that were similar to gene fragments of high relative abundance in the mucilage metagenomes. These five genes were then synthesized for recombinant production in Escherichia coli. Here we report the characterization of an α-N-arabinofuranosidase (GH51) and an oligosaccharide reducing-end xylanase (GH8) from Flavobacterium johnsoniae; an α-L-fucosidase (GH29) and a xylan β-1,4 xylosidase (GH39) from Spirosoma linguale, and a β-mannosidase (GH2) from Agrobacterium fabrum. Biochemical characterization of these enzymes revealed a β-Mannosidase that also exhibits a secondary activity towards the cleavage of galactosyl residues. We also describe two xylanases (GH8 and GH39) from underexplored glycosyl hydrolase families, one thermostable α-L-Fucosidase (GH29) and a thermostable α-N-Arabinofuranosidase (GH51).
Collapse
Affiliation(s)
- Tania Pozzo
- Department of Plant Sciences, University of California, Davis, CA, United States of America
| | - Shawn M. Higdon
- Department of Plant Sciences, University of California, Davis, CA, United States of America
| | - Sivakumar Pattathil
- Mascoma LLC (Lallemand Inc.), Lebanon, NH, United States of America
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Michael G. Hahn
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Alan B. Bennett
- Department of Plant Sciences, University of California, Davis, CA, United States of America
| |
Collapse
|
14
|
Castilla IA, Woods DF, Reen FJ, O'Gara F. Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar Drugs 2018; 16:E227. [PMID: 29973493 PMCID: PMC6071119 DOI: 10.3390/md16070227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023] Open
Abstract
In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced by the chemical industry is rapidly expanding globally. Accompanying this demand is an increased threat to the environment and to human health, due to waste produced by increased industrial production. This increased demand has underscored the necessity to increase reaction efficiencies, in order to reduce costs and increase profits. The discovery of novel biocatalysts is a key method aimed at combating these difficulties. Metagenomic technology, as a tool for uncovering novel biocatalysts, has great potential and applicability and has already delivered many successful achievements. In this review we discuss, recent developments and achievements in the field of biocatalysis. We highlight how green chemistry principles through the application of biocatalysis, can be successfully promoted and implemented in various industrial sectors. In addition, we demonstrate how two novel lipases/esterases were mined from the marine environment by metagenomic analysis. Collectively these improvements can result in increased efficiency, decreased energy consumption, reduced waste and cost savings for the chemical industry.
Collapse
Affiliation(s)
- Ignacio Abreu Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
- Telethon Kids Institute, Perth, WA 6008, Australia.
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|