1
|
Luo M, Wang Y, Liang J, Wan X. Spastin accumulation and motor neuron defects caused by a novel SPAST splice site mutation. J Transl Med 2024; 22:872. [PMID: 39334479 PMCID: PMC11429824 DOI: 10.1186/s12967-024-05669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a rare genetically heterogeneous neurodegenerative disorder. The most common type of HSP is caused by pathogenic variants in the SPAST gene. Various hypotheses regarding the pathogenic mechanisms of HSP-SPAST have been proposed. However, a single hypothesis may not be sufficient to explain HSP-SPAST. OBJECTIVE To determine the causative gene of autosomal dominant HSP-SPAST in a pure pedigree and to study its underlying pathogenic mechanism. METHODS A four-generation Chinese family was investigated. Genetic testing was performed for the causative gene, and a splice site variant was identified. In vivo and in vitro experiments were conducted separately. Western blotting and immunofluorescence were performed after transient transfection of cells with the wild-type (WT) or mutated plasmid. The developmental expression pattern of zebrafish spasts was assessed via whole-mount in situ hybridization. The designed guide RNA (gRNA) and an antisense oligo spast-MO were microinjected into Tg(hb9:GFP) zebrafish embryos, spinal cord motor neurons were observed, and a swimming behavioral analysis was conducted. RESULTS A novel heterozygous intron variant, c.1004 + 5G > A, was identified in a pure HSP-SPAST pedigree and shown to cosegregate with the disease phenotypes. This intron splice site variant skipped exon 6, causing a frameshift mutation that resulted in a premature termination codon. In vitro, the truncated protein was evenly distributed throughout the cytoplasm, formed filamentous accumulations around the nucleus, and colocalized with microtubules. Truncated proteins diffusing in the cytoplasm appeared denser. No abnormal microtubule structures were observed, and the expression levels of α-tubulin remained unchanged. In vivo, zebrafish larvae with this mutation displayed axon pathfinding defects, impaired outgrowth, and axon loss. Furthermore, spast-MO larvae exhibited unusual behavioral preferences and increased acceleration. CONCLUSION The adverse effects of premature stop codon mutations in SPAST result in insufficient levels of functional protein, and the potential toxicity arising from the intracellular accumulation of spastin serves as a contributing factor to HSP-SPAST.
Collapse
Affiliation(s)
- Min Luo
- Department of Neurology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yanying Wang
- Department of Neurology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Jinxiu Liang
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xinhua Wan
- Department of Neurology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
2
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Lima E, Medeiros J. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Mar Drugs 2022; 20:75. [PMID: 35049930 PMCID: PMC8780771 DOI: 10.3390/md20010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), increases continuously demanding the urgent development of anti-Alzheimer's agents. Marine organisms (MO) have to create their own defenses due to the adverse environment where they live and so synthesize several classes of compounds, such as akaloids, to defend themselves. Therefore, the identification of marine natural products with neuroprotective effects is a necessity. Being that AD is not only a genetic but also an environmental complex disease, a treatment for AD remains to discover. As the major clinical indications (CI) of AD are extracellular plaques formed by β-amyloid (Aβ) protein, intracellular neurofibrillary tangles (NFTs) formed by hyper phosphorylated τ-protein, uncommon inflammatory response and neuron apoptosis and death caused by oxidative stress, alkaloids that may decrease CI, might be used against AD. Most of the alkalolids with those properties are derivatives of the amino acid tryptophan mainly with a planar indole scaffold. Certainly, alkaloids targeting more than one CI, multitarget-directed ligands (MTDL), have the potential to become a lead in AD treatment. Alkaloids to have a maximum of activity against CI, should be planar and contain halogens and amine quaternization.
Collapse
Affiliation(s)
- Elisabete Lima
- Faculty of Science and Technology (FCT), Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal;
| | - Jorge Medeiros
- Faculty of Science and Technology (FCT), Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal
| |
Collapse
|
4
|
Xu Z, Jiang J, Xu S, Xie Z, He P, Jiang S, Xu R. Nerve Growth Factor is a Potential Treated Target in Tg(SOD1*G93A)1Gur Mice. Cell Mol Neurobiol 2020; 42:1035-1046. [PMID: 33236288 DOI: 10.1007/s10571-020-00993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn't been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianxiang Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengyuan Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zunchun Xie
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Pei He
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Fenrich M, Mrdenovic S, Balog M, Tomic S, Zjalic M, Roncevic A, Mandic D, Debeljak Z, Heffer M. SARS-CoV-2 Dissemination Through Peripheral Nerves Explains Multiple Organ Injury. Front Cell Neurosci 2020; 14:229. [PMID: 32848621 PMCID: PMC7419602 DOI: 10.3389/fncel.2020.00229] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease (CoVID-19), caused by recently identified severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2), is characterized by inconsistent clinical presentations. While many infected individuals remain asymptomatic or show mild respiratory symptoms, others develop severe pneumonia or even respiratory distress syndrome. SARS-CoV-2 is reported to be able to infect the lungs, the intestines, blood vessels, the bile ducts, the conjunctiva, macrophages, T lymphocytes, the heart, liver, kidneys, and brain. More than a third of cases displayed neurological involvement, and many severely ill patients developed multiple organ infection and injury. However, less than 1% of patients had a detectable level of SARS-CoV-2 in the blood, raising a question of how the virus spreads throughout the body. We propose that nerve terminals in the orofacial mucosa, eyes, and olfactory neuroepithelium act as entry points for the brain invasion, allowing SARS-CoV-2 to infect the brainstem. By exploiting the subcellular membrane compartments of infected cells, a feature common to all coronaviruses, SARS-CoV-2 is capable to disseminate from the brain to periphery via vesicular axonal transport and passive diffusion through axonal endoplasmic reticula, causing multiple organ injury independently of an underlying respiratory infection. The proposed model clarifies a wide range of clinically observed phenomena in CoVID-19 patients, such as neurological symptoms unassociated with lung pathology, protracted presence of the virus in samples obtained from recovered patients, exaggerated immune response, and multiple organ failure in severe cases with variable course and dynamics of the disease. We believe that this model can provide novel insights into CoVID-19 and its long-term sequelae, and establish a framework for further research.
Collapse
Affiliation(s)
- Matija Fenrich
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Stefan Mrdenovic
- Department of Hematology, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
- Department of Internal Medicine, Family Medicine and History of Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marta Balog
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Svetlana Tomic
- Clinic of Neurology, University Hospital Osijek, Osijek, Croatia
- Department of Neurology and Neurosurgery, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Milorad Zjalic
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Alen Roncevic
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Dario Mandic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
| | - Zeljko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Heffer
- Laboratory of Neurobiology, Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
6
|
Beijer D, Sisto A, Van Lent J, Baets J, Timmerman V. Defects in Axonal Transport in Inherited Neuropathies. J Neuromuscul Dis 2020; 6:401-419. [PMID: 31561383 PMCID: PMC6918914 DOI: 10.3233/jnd-190427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axonal transport is a highly complex process essential for sustaining proper neuronal functioning. Disturbances can result in an altered neuronal homeostasis, aggregation of cargoes, and ultimately a dying-back degeneration of neurons. The impact of dysfunction in axonal transport is shown by genetic defects in key proteins causing a broad spectrum of neurodegenerative diseases, including inherited peripheral neuropathies. In this review, we provide an overview of the cytoskeletal components, molecular motors and adaptor proteins involved in axonal transport mechanisms and their implication in neuronal functioning. In addition, we discuss the involvement of axonal transport dysfunction in neurodegenerative diseases with a particular focus on inherited peripheral neuropathies. Lastly, we address some recent scientific advances most notably in therapeutic strategies employed in the area of axonal transport, patient-derived iPSC models, in vivo animal models, antisense-oligonucleotide treatments, and novel chemical compounds.
Collapse
Affiliation(s)
- Danique Beijer
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium.,Neurology Department, University Hospital Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| |
Collapse
|
7
|
Hansen T, Thant C, White JA, Banerjee R, Thuamsang B, Gunawardena S. Excess active P13K rescues huntingtin-mediated neuronal cell death but has no effect on axonal transport defects. Apoptosis 2020; 24:341-358. [PMID: 30725352 DOI: 10.1007/s10495-019-01520-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High levels of oxidative stress is detected in neurons affected by many neurodegenerative diseases, including huntington's disease. Many of these diseases also show neuronal cell death and axonal transport defects. While nuclear inclusions/accumulations likely cause cell death, we previously showed that cytoplasmic axonal accumulations can also contribute to neuronal death. However, the cellular mechanisms responsible for activating cell death is unclear. One possibility is that perturbations in normal axonal transport alter the function of the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-pathway, a signal transduction pathway that promotes survival/growth in response to extracellular signals. To test this proposal in vivo, we expressed active PI3K in the context of pathogenic huntingtin (HTT-138Q) in Drosophila larval nerves, which show axonal transport defects and neuronal cell death. We found that excess expression of active P13K significantly suppressed HTT-138Q-mediated neuronal cell death, but had no effect on HTT-138Q-mediated axonal transport defects. Expression of active PI3K also rescued Paraquat-mediated cell death. Further, increased levels of pSer9 (inactive) glycogen synthase kinase 3β was seen in HTT-138Q-mediated larval brains, and in dynein loss of function mutants, indicating the modulation of the pro-survival pathway. Intriguingly, proteins in the PI3K/AKT-pathway showed functional interactions with motor proteins. Taken together our observations suggest that proper axonal transport is likely essential for the normal function of the pro-survival PI3K/AKT-signaling pathway and for neuronal survival in vivo. These results have important implications for targeting therapeutics to early insults during neurodegeneration and death.
Collapse
Affiliation(s)
- Timothy Hansen
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Claire Thant
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Joseph A White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Bhasirie Thuamsang
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US. .,The State University of New York at Buffalo, 109 Cooke Hall, North/Amherst Campus, Buffalo, NY, 14260, US.
| |
Collapse
|
8
|
Prinzi G, Santoro A, Lamonaca P, Cardaci V, Fini M, Russo P. Cognitive Impairment in Chronic Obstructive Pulmonary Disease (COPD): Possible Utility of Marine Bioactive Compounds. Mar Drugs 2018; 16:md16090313. [PMID: 30181485 PMCID: PMC6163567 DOI: 10.3390/md16090313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by long-term airflow limitation. Early-onset COPD in non-smoker subjects is ≥60 years and in the elderly is often associated with different comorbidities. Cognitive impairment is one of the most common feature in patients with COPD, and is associated with COPD severity and comorbidities. Cognitive impairment in COPD enhances the assistance requirement in different aspects of daily living, treatment adherence, and effectual self-management.This review describes various bioactive compounds of natural marine sources that modulate different targets shared by both COPD and cognitive impairment and hypothesizes a possible link between these two syndromes.
Collapse
Affiliation(s)
- Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Alessia Santoro
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Vittorio Cardaci
- Unit of Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana 235, I-00163 Rome, Italy.
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| |
Collapse
|
9
|
Zhu J, Shen L, Lin X, Hong Y, Feng Y. Clinical Research on Traditional Chinese Medicine compounds and their preparations for Amyotrophic Lateral Sclerosis. Biomed Pharmacother 2017; 96:854-864. [DOI: 10.1016/j.biopha.2017.09.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
|
10
|
Ferrari R, Lovering RC, Hardy J, Lewis PA, Manzoni C. Weighted Protein Interaction Network Analysis of Frontotemporal Dementia. J Proteome Res 2017; 16:999-1013. [PMID: 28004582 PMCID: PMC6152613 DOI: 10.1021/acs.jproteome.6b00934] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The genetic analysis
of complex disorders has undoubtedly led to
the identification of a wealth of associations between genes and specific
traits. However, moving from genetics to biochemistry one gene at
a time has, to date, rather proved inefficient and under-powered to
comprehensively explain the molecular basis of phenotypes. Here we
present a novel approach, weighted protein–protein interaction
network analysis (W-PPI-NA), to highlight key functional players within
relevant biological processes associated with a given trait. This
is exemplified in the current study by applying W-PPI-NA to frontotemporal
dementia (FTD): We first built the state of the art FTD protein network
(FTD-PN) and then analyzed both its topological and functional features.
The FTD-PN resulted from the sum of the individual interactomes built
around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty
nine of 4198 nodes, called inter-interactome hubs (IIHs), represented
those interactors able to bridge over 60% of the individual interactomes.
Functional annotation analysis not only reiterated and reinforced
previous findings from single genes and gene-coexpression analyses
but also indicated a number of novel potential disease related mechanisms,
including DNA damage response, gene expression
regulation, and cell waste disposal and
potential biomarkers or therapeutic targets including EP300. These
processes and targets likely represent the functional core impacted
in FTD, reflecting the underlying genetic architecture contributing
to disease. The approach presented in this study can be applied to
other complex traits for which risk-causative genes are known as it
provides a promising tool for setting the foundations for collating
genomics and wet laboratory data in a bidirectional manner. This is
and will be critical to accelerate molecular target prioritization
and drug discovery.
Collapse
Affiliation(s)
- Raffaele Ferrari
- Department of Molecular Neuroscience, UCL Institute of Neurology , Russell Square House, 9-12 Russell Square House, London WC1B 5EH, United Kingdom
| | - Ruth C Lovering
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London , London WC1E 6JF, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology , Russell Square House, 9-12 Russell Square House, London WC1B 5EH, United Kingdom
| | - Patrick A Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology , Russell Square House, 9-12 Russell Square House, London WC1B 5EH, United Kingdom.,School of Pharmacy, University of Reading , Whiteknights, Reading RG6 6AP, United Kingdom
| | - Claudia Manzoni
- Department of Molecular Neuroscience, UCL Institute of Neurology , Russell Square House, 9-12 Russell Square House, London WC1B 5EH, United Kingdom.,School of Pharmacy, University of Reading , Whiteknights, Reading RG6 6AP, United Kingdom
| |
Collapse
|